Теплопроводность пеноблоков: Теплопроводность пеноблока
Теплопроводность пеноблока
Такое свойство материала как теплопроводность можно считать одним из основных, пеноблок не является исключением. Это свойство показывает, как материал проводит тепло сквозь свою толщину при большой разности температур на разных поверхностях. Рассматриваемое свойство материала сначала исследуют, а затем определяют области строительства, которых можно применять исследуемый материал.
Теплопроводность величина зависима, прежде всего она зависит от плотности пенобетонных блоков, то есть из изменением плотности величина теплопроводности меняется. При увеличении плотности теплопроводность пеноблока уменьшается и наоборот.
Сам материал имеет небольшую теплопроводность, это связано с его структурой. Известно, что пенобетон состоит из большого количества пор, в которые заключён воздух, если его взять отдельно, то он имеет минимальную теплопроводность, всего 0,026 Вт/м оС. Такая величина теплопроводности достаточно мала, даже если сравнивать с керамзитобетоном.
Теплопроводность пеноблоков влияет на их свойства. Величину теплопроводности следует понимать так – чем она выше, тем хуже теплоизоляционные качества пеноблоков.
Теперь можно рассмотреть влияние плотности материала на его теплопроводность. Плотность пеноблока маркируется буквой Д, и измеряется в пределах от Д300 до Д1200. А сейчас рассмотрим теплопроводность материала при минимальной и максимальной плотности.
Если используется материал с плотностью Д300 то теплопроводность пеноблока составит 0,08 Вт/м ºС; при изменении теплопроводности до Д1200 теплопроводность изменится до 0,38 Вт/м ºС. Из этого следует сделать выводы, что изменение плотности в 4 раза понижает теплопроводность материала почти в 5 раз.
При создании проектов зданий ведётся учёт необходимого уровня теплоизоляции стен, поэтому в некоторых случаях нужно увеличить толщину стены или устроить дополнительное утепление.
Специалисты рекомендуют использовать пенобетон средней плотности, а конкретнее Д600 – он прочный и хорошо держит тепло. Толщина стены зависит от конкретного региона с его климатическими условиями.
Теплопроводность пенобетона — на что влияет коэффициент
Теплопроводность – одна из важнейших характеристик пенобетона, отражающая его способность транспортировать тепловую энергию. Этот критерий определяет область и возможность применения стройматериалов, его эксплуатационные свойства. Не стоит забывать о том, что тепловодность неразрывно связана с основными параметрами, такими как плотность и прочность материала. От данного сочетания зависит, насколько будет дом теплым и прочным. Неоспоримая ценность пенобетона состоит в низкой теплопроводности.
Что влияет на показатель теплопроводимости?
Существуют прямолинейная зависимость между плотностью и теплопроводностью пенобетона. В структуре материала имеется значительное количество пор, которые заполнены воздухом. Показатель теплопроводности воздуха – 0,026 Вт/м°С, что почти на порядок ниже, чем у обычного бетона, содержащего легкие наполнители. Именно наличие воздуха в стройматериале существенно снижает его теплопроводность.
Огромное влияние на данный показатель оказывает плотность материала (D). Пеноблоки с плотностью D300 обладают теплопроводностью 0,08 Вт/м°С, а при плотности D1200 показатель достигает 0,38 Вт/м оС. Чем выше плотность блоков, тем хуже их теплоизоляционные свойства.
Для достижения требуемого уровня теплоизоляции необходимо увеличить толщину стен либо проложить дополнительный слой утеплителя. Данные меры способствуют удорожанию строительства и требуют заливки более прочного фундамента.
Оптимальным выбором для возведения жилого дома является пенобетон D600. Используя данный материал, можно построить 2-3-этажный дом с толщиной стен 30-40 см.
Коэффициент теплопроводности
Для обозначения коэффициента теплопроводности пенобетона используют λ и единицу измерения ВТ/м*К.
Если сравнивать данный показатель с характеристиками традиционных строительных материалов ( керамический или силикатный кирпич, известняк или шлакоблок) пенобетон заметно выигрывает. Например, стена толщиной 30 см, выложенная из пеноблоков, имеет показатель 0,18 ВТ/м*К, в то время как для шлакоблока данный параметр будет достигнут только при толщине стены 108 см, из керамического кирпича – при 138 см.
Теплопроводность пенобетона обратно пропорциональна показателям прочности и плотности.
Блоки плотность 400-500 кг/м3 используются в качестве утеплителя. Материал плотностью 1100-1200 кг/м3 способен выдерживать серьезные нагрузки и применяется в строительстве 1-2 этажных домов, но при этом хуже сохраняет тепло. Пенобетонные блоки с плотность 600-700 кг/м3 выдерживают нагрузку плит перекрытий и обладают достаточной теплостойкостью. Именно они чаще всего используются в малоэтажном жилом строительстве.
На степень теплопроводности материала оказывает влияние размер внутренних пустот. Теплоизолирующие свойства блоков тем выше, чем больше воздушных пузырьков внутри массы материала. Не менее важна геометрическая точность производства пеноблоков, потому как от нее зависит расход специального клеящего состава. Если толщина кладочного раствора составляет 2-3 мм, то стена практически монолитная. При использовании неровных блоков производится выравнивание кладки за счет раствора, в результате чего толщина шва может достигнуть 10-12 мм. В дальнейшем это приведет к возникновению «мостиков холода» и повлечет за собой значительные теплопотери.
Теплопроводность пеноблока
Многих строителей, да и простых обывателей не имеющих опыта работы с пенобетоном, терзает вопрос: чем он так хорош, что буквально за последнюю пятилетку создал серьезную конкуренцию традиционным строительным материалам? Изучив состав пеноблока, ответ на него становится очевиден: пористая структура наделяет эту разновидность легкого бетона сочетанием качеств, значимость которых трудно переоценить. Исключением не стала и теплопроводность пеноблока, демонстрирующая уровень его возможности пропускать тепло.
Можно проследить закономерность зависимости коэффициента теплопроводности от величины его плотности, и соответственно от прочности, а секрет такого соотношения кроется в микропорах, составляющих основу бетонного тела. Так, блоки обладающие малой плотностью отличаются значительными размерами структурных ячеек, это обстоятельство не только увеличивает способность их к сохранению тепла, но и снижает стойкость к воздействию динамических нагрузок, а особо прочный пенобетон, хуже сохраняет тепло в здании и имеет большую плотность, влияющую на вес изделия.
Выбор плотности вспененного бетона
Конечно, в первую очередь нормируемое значение прочности и плотности пенобетонных изделий определяются проектными данными будущего здания. Если же все расчеты производятся самостоятельно, то при вычислении теплопроводности стен учитываются следующие нормативные показатели:
- Значения теплотехнических параметров всех изделий и материалов, используемых при возведении здания.
- Сопротивление передачи тепла самого сооружения.
- Показатель градусосуток района строительства, его значение можно узнать из СНиПа 2-3-79.
После выявления этих параметров, следует простой математический расчет, заключающийся в суммировании величин сопротивления теплопередачи всех слоев несущей стены.
Как правило, постройка дома из пеноблоков, высота которого не превышает 3-х этажей, оптимальным вариантом будет качественный блок, обладающий плотностью D800. Стены, выполненные из них, обладают достаточным пределом прочности, чтобы выдержать нагрузки бетонной или монолитной плиты перекрытия, но только при обязательном устройстве армопояса. Если же предполагается перекрытие из дерева, то дополнительное усиление не понадобится. Еще одна вариация их применения при возведении надежного и теплого здания, является возложение функций несущего материала на кирпич, а для утепления берут пенобетонные блоки малой плотности.
Преимущества перед другим материаломДабы убрать оставшуюся долю сомнений о качестве выбора пенобетона на роль основного материала, стоит еще раз пересмотреть сравнительные преимущества этих изделий над другими материалами.
В сравнении с деревом, у него намного выше прочность и ниже себестоимость, к тому же он выделяется отличной огнестойкостью, что нельзя сказать даже об обработанной специальными противопожарными веществами древесине. Уровень комфортабельности и экологичность пеноблочного строения не уступают зданию, построенному из дерева, при этом их на много проще монтировать.
КирпичПо всем параметрам, за исключением прочности, обычный кирпич уступает пенобетону, именно поэтому при возведении зданий, высотностью более 3 этажей, предпочтение отдается кирпичу, а теплоизоляционными пеноблокам устраивается утепление. Такой вариант является самым качественным и экономичным, при строительстве многоэтажных зданий.
Газоблок
Газобетон хоть и хороший стеновой материал, но все-таки в его арсенале имеются серьезные отрицательные характеристики, он наиболее чувствителен к продолжительному воздействию воды. Поэтому для устройства гидроизоляции применяются дорогостоящие материалы, а для зданий с очень высоким уровнем влажности таких как бани, котельные, бассейны — газоблок категорически не рекомендуется, также у стен, возведенных из такого материала, присутствуют «мостики холода». Плюс ко всему, пеноблоки не такие вредные для окружающей среды, нежели газобетон.
Шлакоблок
Несмотря на то, что шлакоблок намного дешевле пеноблока, применять их в строительстве менее целесообразно, нежели ячеистые вспененные блоки. Во – первых, пенобетонные изделия имеют больший пространственный объем и меньшую плотность, следовательно блоки изготовленные из пенобетонной смеси в разы легче и экономичнее в плане расходов на кладочный раствор. Поэтому укладывать и перевозить их на много легче и быстрее, нежели шлакоблоки, во-вторых, ячеистые изделия имеют лучший показатель теплопроводности, чем шлакоблок, а вот прочность практически одинакова у обеих разновидностей.
Вывод
Отдавая предпочтение пеноблоку, хорошо изучите его качественные показатели для каждой плотности, и уже исходя из этих значений и из показателей погодных условий вычисляйте толщину стен и уровень теплопроводности здания. Неправильные расчеты могут привести к промерзанию строения, что выразится в больших затратах на отоплении здания.
Удачной стройки!
Теплопроводность разных марок пеноблоков — stoneguru.rustoneguru.ru
Дата: 12.06.2014
Пенобетон стал очень популярен среди строителей благодаря целому ряду своих положительных качеств, но ведущей из них остается теплопроводность.
Это свойство пенобетонных блоков определяет их возможность сбалансировать процесс прохода теплоты при условии разных температур снаружи и внутри. Качество провождения напрямую связано с другими техническими параметрами блоков, но особенно зависит от плотности. Все происходит по принципу прямой однолинейной корреляции: чем больше коэффициент плотности блока, тем выше теплопроводность пенобетона. Из-за того, что у воздуха очень маленькая свойство перемещать теплоту, его присутствие в пенобетоне существенно понижает это качество.
Практическое значение показателя
Теплопроводность пенобетонных блоков демонстрирует его теплоизоляционные свойства. Но важно помнить, что чем больше коэффициент теплопроводности, тем хуже он утепляет здания. Насыщенность передачи тепла за счет этого свойства имеет прямую зависимость от соотношения разницы температур на разных концах к интервалу между ними.
В реальных условиях все выглядит таким образом: в холодное время года, как не пытайся протопить (или обогреть) помещение, а остатки тепла в любом случае выйдут наружу, а в жаркий период в доме температура будет такая же, как и на улице.
Существует шкала, которая непосредственно связывает плотность (обозначается латинской буквой D) пенобетона марок 300, 400, 500, 600 c его теплоизоляционными свойствами.
Для того чтобы правильно сделать расчет теплопроводности стен из пенобетона, необходимо учитывать следующие показатели:
- знать о теплотехнических параметрах других материалов, задействованных при строительстве;
- помнить о сопротивлении постройки передаче тепла;
- высчитать показатель ГСОП.
Он измеряется как сумма сопротивлений всех слоев.
Сравнительная теплопроводность выигрывает на фоне других стройматериалов
Пенобетон в сравнении с:
- деревом — более выгоден, его плотность выше, а себестоимость меньше и производится легко, как в домашних условиях, так и на стройплощадке.
- газобетоном — используется при большом уровне влажности. Плюс ко всему не является таким вредным для окружающей среды.
- кирпичом — уступает лишь в показателе прочности (для возведения многоэтажного здания лучше предпочтение отдать кирпичу, или хотя из него сделать несущие стены).
Автоклавный пенобетон имеет более высокую прочность, более низкий коэффициент проводимости тепла (0,09-0,18 Вт/ (м*°С). У неавтоклавного меньшие свойства по энергоемкости и энергосбережению (коэффициент 0.07 до 0.2 Вт/м*°С).
Теплопроводность пеноблока, от чего зависит, сравнение с кирпичом и минватой
Из-за разности температур воздуха внутри и снаружи помещения происходит перенос энергии через пеноблок. Такое явление присуще всем телам и получило название теплопроводности. Является одним из главных свойств и характеризует способность проводить тепло. Чем она меньше, тем лучше энергосберегающие показатели ограждающих конструкций строения (дом медленнее остывает и быстрее прогревается). Пенобетон имеет наименьшую термопроводность среди современных стройматериалов. Это обусловлено наличием в его внутренней структуре пор воздуха.
Оглавление:
- Измерение коэффициента
- На что влияет теплопроводность?
- Сравнение блока с минватой
- Характеристики кирпича
Способы испытаний
Теплопроводность пенобетона измеряют на пяти плоских образцах.
Методика:
- создание потока тепла;
- измерение температур на лицевой, тыльной поверхностях, теплового потока и толщины.
Коэффициент показывает, сколько энергии пропускает 1 м2 в единицу времени, его вычисляют по формуле:
λ = δ∙(Тл-Тт)/q, где:
- δ — толщина образца;
- Тл — температура лицевой стороны;
- Тт — температура тыльной плоскости;
- q — тепловой поток на 1 м2.
Термопроводность блоков пенобетона зависит от следующих основных факторов:
- Плотность.
- Состав компонентов.
- Влажность.
Вид | Марка | Теплопроводность Вт/(м∙°C) в сухом состоянии, изготовленного на: | |
песке | золе | ||
Теплоизоляционный пенобетон | D300-D500 | 0,08-0,12 | 0,08-0,10 |
Конструкционно-теплоизоляционный | D600-D800 | 0,14-0,24 | 0,13-0,20 |
Конструкционный | D1000-D1200 | 0,29-0,38 | 0,23-0,29 |
Чем меньше удельный вес, тем ниже коэффициент теплопроводности из-за значительного числа воздушных пор. Марки D300, D500 имеют самые лучшие теплозащитные свойства, но не получили распространения при строительстве бескаркасных домов вследствие низкой прочности. Такого недостатка нет у D600 и D700, которые наилучшим образом сочетают достаточную несущую способность и термопроводность. Но с целью сохранения теплопередачи может потребоваться увеличение ширины ограждающих конструкций, а D800 уже необходимо дополнительно утеплять. Более плотный пенобетон, как способ снижения термообмена, используют только с тепловой защитой.
Анализ теплопроводности разных марок пеноблоков, изготовленных на песке или золе, показывает большое влияние компонентов на этот показатель. Потери тепла в пенобетоне из золы меньше. Указанный эффект связан с её большим термическим сопротивлением. С повышением влажности термопроводность растёт и рекомендуется защищать отделкой наружные поверхности.
На что влияет?
От теплопроводности зависят поперечные размеры наружных стен возводимого дома. Её значения применяются для теплотехнических расчетов. Каждый застройщик может самостоятельно провести оценку требуемой ширины блока. Дополнительно потребуется величина нормативного сопротивления термоотдачи здания для региона застройки (Rreg), её берут из таблиц СниП. Искомая толщина стены (δ) вычисляется просто: δ= Rreg∙λ. Здесь λ — коэффициент теплопроводности, взятый из заводского сертификата. Для более точного расчета необходимо учитывать термопередачу кладочных швов, а также теплообмен между наружным и внутренним воздухом и плоскостью пеноблока.
Стройматериалы по функциональному назначению бывают:
- Конструкционные (используются при создании каркаса сооружения).
- Для утепления.
Первые характеризуются высокой термопроводностью — это тяжёлый бетон, армированный сталью. Лучше держит тепло кирпич, из утеплителей можно отметить минеральную вату. Пенобетон в зависимости от марки применяется как для создания несущих стен, так и для изоляции.
Сравнение с минватой
Минеральная вата относится к классу материалов, используемых при термоизоляции строений. Ее сопоставление правомерно проводить с блоками теплоизоляционного вида.
Наименование | Теплопроводность, Вт/(м∙°C) |
D300 | 0,08 |
D500 | 0,10-0,12 |
Каменная минвата 25-180 кг/ куб. м | 0,037-0,04 |
Преимущества минеральной ваты:
- Теплопроводность меньше в два раза. Это позволяет сделать размеры ограждающей конструкции более оптимальными с сохранением термообмена.
- Удельный вес ниже в 1,7-12 раз — уменьшается вес утеплителя, его нагрузка на строение.
Недостатки:
- Не имеет несущей способности — необходимо закреплять (пенобетон обладает достаточной прочностью).
- Имеет склонность к осадке — увеличивается теплопередача сооружения.
- В случае намокания растёт вес и увеличивается нагрузка на перекрытия, кровлю, повышается теплообмен.
Сравнение с кирпичом
Кирпич по составу бывает двух типов:
- Керамический (производится из глины).
- Силикатный (из кварцевого песка).
Определяющими термопроводность кирпича факторами являются:
- Плотность (чем больше, тем выше теплопроводность).
- Форма и размеры пустот (сквозные или глухие, щелевые или конические) позволяют снизить в 1,45-1,6 раза теплопередачу керамического по сравнению с полнотелым. Для силикатного эта зависимость слабее, термообмен практически не зависит от степени пустотелости.
- Влажность (увеличивает теплопередачу).
Сравнительный анализ показывает: потери тепла через пенобетон будут меньше.
Наименование | Плотность, кг/м3 | Теплопроводность, Вт/(м∙°C) |
Пеноблок D600-D900 | 600-900 | 0,14-0,24 |
D1000-D1200 | 1000-1200 | 0,29-0,38 |
Керамический полнотелый кирпич | 1600-1900 | 0,6-0,7 |
Красный пустотелый (13-50 %) | 1300-1400 | 0,3-0,5 |
Силикатный полнотелый | 1700-1900 | 0,65-0,88 |
Силикатный пустотелый (30 %) | 1450-1550 | 0,56-,81 |
youtube.com/embed/S8s3IEX1lSw» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Сравнительная характеристика теплопроводности газобетона. Выбор толщины блока.
Технические характеристики газобетонных блоков
Отопительный сезон зачастую сопряжён с потерей тепла, которое крадут «холодные» стены не из газобетона UDK :-). А потому целесообразно строить или утеплять частный коттедж с использованием пористого материала. Газобетон различают по его плотности, которая измеряется в кг/м3. В зависимости от марки блока, его используют в различных целях: теплоизоляционных — в роли утеплителя, для постройки не высоких зданий, для строительства несущих конструкций высотных зданий.
Маркировка D400 обозначает, что в 1м3 пористого материала находится 400 кг. твёрдых частиц, занимающих 1/3 всей массы блока. Воздушные массы в ячейках являются естественной теплоизоляцией, не позволяющей внутреннему теплу из помещения проникать сквозь них. А потому, чем менее плотный монолит, тем лучше он сохранит тепло. В отличие от других стройматериалов, газобетонные блоки обладают более низкими показаниями теплопроводности. В этом можно убедиться взглянув на данную сравнительную таблицу и наглядные графики.
с Материал | Теплопроводность, Вт/м °C | |
Показатели плотности, кг/м3 | ||
D400 | D500 | |
Газобетон при уровне влажности 0% | 0,096 | 0,112 |
5% | 0,117 | 0,147 |
Пенобетон при уровне влажности 0% | 0,102 | 0,131 |
5% | 0,131 | 0,161 |
Древесина, при уровне влажности 0% | 0,116 | 0,146 |
5% | 0,181 | 0,187 |
Структура пеноблоков похожа на газобетон, но при этом в пеноблоках замкнутые ячейки и высокие показатели плотности. Геометрия пеноблоков не точна и не совершенна, а потому в роли теплоизоляционного материала намного выгоднее использовать именно газобетон.
Древесина, хоть и является экологически чистым материалом, но когда речь заходит о её качественных теплоизоляционных свойствах, то она значительно проигрывает газобетону, так как не способна в должной мере сохранить тепло.
Однако отметим, что ячеистый блок – дышащий, огнеупорный материал, который отлично справляется со всеми поставленными перед ним задачами. Используя его в строительстве, важно сделать ограждение фундамента и цоколя здания от влаги. Потому как пористая структура может её тянуть в себя. С этой целью применяется рубероид и битум.
Характеристики теплопроводности кирпича и газобетонных блоков
Кирпич — классический вариант стройматериала, используемый для строительства дачных домиков и частных коттеджей. Он морозоустойчив, долговечен и обладает высокой плотностью. Но в отличие от газобетонных блоков, кирпичная стена возводится многослойной. Для того, чтобы дополнительно проложить утепляющие материалы между наружными и внутренними кладками.
Материал | Показатели средней теплопроводности, Вт/м ° C |
Газоблок | 0,08-0,14 |
Керамические кирпичи | 0,36-0,42 |
Красные глиняные кирпичи | 0,57 |
Силикатные кирпичи | 0,71 |
Выбор толщины блока
Толщина стен влияет на их теплоизоляционные свойства. Чем они толще, тем дольше будет сохранятся комфортная атмосфера внутри жилища.В процессе проектирования ширины ограждений, необходимо учитывать «мостики холода» (толщина цемента для укладки). Блоки монтируют при помощи пазового замка и клеевого раствора. Данный способ гарантирует сохранность тепла, сводя его потери до минимальных значений. Чтобы не платить больше, важно знать некоторые показатели, которыми обладают сборные конструкции стандартной толщины.
Материал | Показатели толщины наружных стен, см | ||||
12 см | 20 см | 24 см | 30 см | 40 см | |
Показатели теплопроводности, Вт/м ° C | |||||
Белые кирпичи | 7,51 | 4,52 | 3,75 | 3,12 | 2,25 |
Красные кирпичи | 6,75 | 4,05 | 3,37 | 2,71 | 2,02 |
Газобетонный блок D400 | 0,82 | 0,51 | 0,41 | 0,32 | 0,25 |
Наилучшими качественными характеристиками на сегодняшний день обладают газобетон ЮДК которые производятся в городе Днепр (Украина). Шесть лет назад (в 2012 г.) завод UDK создал газобетон D400 с показателем прочности — 35 кг/см2. Данные свойства стройматериала позволили значительно сократить глубину наружных стен, что в свою очередь повлияло на себестоимость стройки.
За счёт того, что геометрия блоков ЮДК чёткая и точная, их можно класть на ультратонкий слой клея UDK TBM, благодаря чему в итоге не образуется «мостиков холода». К тому же, за счёт низкого коэффициента теплопотери, наружным стенам не потребуется дополнительное утепление. А высокий уровень прочности газобетона позволяет возводить здания до 5 этажей. При этом не используя монолитный каркас. Срок службы газоблока ЮДК около 100 лет.
Выбор толщины стены из газобетонных блоков ЮДК
Стена | Размер блока |
Наружная стена: | D400, D500; В2,5-В2,0; 25-35 кг/см2; 400-500 мм. |
Несущая | |
Не несущая | |
Жилой дом до 4 этажей, где проживают круглый год | |
Перегородка: | D400, D500; В2,5-В2,0; 25-35 кг/см2; 200-500 мм. |
Несущая при условии устройства монолитного пояса | |
Перегородка: | D500; В2,5; |
Не несущая |
Выбор толщины стен необходимо делать с учётом вида постройки. Для постройки жилого дома у застройщиков пользуется популярностью толщина стены в один слой — 300-400 мм (иногда 500 мм). Ведь однослойные стены – всегда на порядок дешевле, нежели «сэндвичи». Классический стандартный газоблок имеет такие параметры: плотность — D300, D400; прочность В2,0,В2,5. Такой блок подходит для строительства одно- и двухэтажных зданий.
Для загородного дачного домика, куда хозяин наведывается лишь в тёплое время года, а зимой не требуется поддержание в помещении тепла, блока глубиной в 200 мм более чем достаточно. Такие стены прогреются очень быстро, а значит потребуется меньше энергоресурсов.
Для хозяйственных построек, а также гаража, толщину стен необходимо выбирать с учётом частоты нахождения в них. Там должно быть уютно и комфортно. Чтобы влажность и температурный режим были в норме для нужд хозяина помещения, в любое время года.
Определится с толщиной стены из газобетонных блоков, инвестор может исходя из нескольких нюансов. Во-первых, это стоимость газобетона. А она очень выгодная с учётом всех требований. Во-вторых, это типовой проект. Обычно в него закладывают средний показатель толщины стены с указанием температурной зоны и требования к коэффициенту сопротивления теплопередачи, как указано на рисунке ниже.
Для южной части Украины стена может быть более тонкой, нежели в северном регионе страны. Чем тоньше стена – тем большая жилая площадь выйдет в итоге. Естественно, толстые стены крадут жилые метры. Но, при злоупотреблении правилами грамотной стройки, можно существенно потерять на отоплении в зимний период и охлаждении в летний сезон. Ведь сквозь «холодные» стены тепло будет утекать с большой скоростью, а летом наоборот станет невыносимо жарко. К тому же, суммы за отопление и охлаждение помещения дополнительными средствами, увеличатся в разы.
Решение строить здание с толстыми стенами, это опять же не выгодно, ведь необходимо будет потратиться на дополнительный фундамент. Альтернативный и разумный выбор – стены из газобетона. Удовлетворяющие как потребителя, так и застройщика тем, что не дорого стоят и надёжно сохраняют тепло, при этом не мешая помещению «дышать».
На сегодняшний день газобетон ЮДК является оптимальным выбором стройматериала. Долговечный (70-100 лет), надёжный, обладающий низкой теплопроводностью и безупречной геометрией блоков – он находится на пике своей популярности. Благодаря его не высокому объёмному весу идёт меньшая нагрузка на фундамент. Лучше ложатся отделочные материалы и не требуется больших трудозатрат. А разнообразный выбор газобетонных блоков, отличающихся по толщине, прочности и назначению — способен удовлетворить требования большинства застройщиков.
Основные достоинства и недостатки пеноблоков
В настоящий момент пенобетон является одним из самых популярных материалов используемых при строительстве коттеджей и малоэтажных зданий различного назначения. Популярность пеноблоков такова, что производственные мощности заводов, мини цехов и установок, принадлежащих владельцам коттеджей и земельных участков, едва успевают покрывать постоянно растущий спрос на данный вид продукции.
Причины роста популярности пеноблоков и пенобетона:
- Растущие объемы малоэтажного строительства;
- Выдающиеся технико-эксплуатационные свойства;
- Привлекательная цена;
Основные технико-эксплутационные свойства пеноблоков
Высокая прочность
Прочность пеноблока на сжатие колеблется в пределах 3,5-5,0 МПа: это означает, что некоторые марки пеноблоков могут быть использованы при строительстве зданий, высота которых составляет три этажа и менее.
Низкая плотность
Плотность пеноблоков в зависимости от марки составляет от 400 до 1600 кг/м. куб., что в 2…4 раза меньше, нежели плотность другого легкого материала — керамзитобетона. В сущности, плотность пенобетона не намного больше плотности массива древесины: это, в свою очередь, позволяет снизить затраты на хранение и транспортировку блоков, а также упрощает работу с ними при возведении зданий.
Низкая теплопроводность
По своим теплоизоляционным свойствам пеноблоки практически не уступают натуральной древесине и в 3…4 раза превосходят обычный глиняный кирпич. Последнее означает, что стена из пеноблоков стандартного размера (200х188х388мм.), выложенных в один ряд, сохраняет тепло так же, хорошо как кирпичная стена толщиной 60-80 см.
Отличная звукоизоляция.
Благодаря огромному количеству пор, заполненных воздухом, пеноблоки обладают великолепными звукоизоляционными свойствами. Это является особенно важным в то при строительстве зданий в больших городах, где уличный шум является практически постоянным раздражающим фактором
Влагостойкость
Пеноблок практически не имеет открытых пор, а потому его влагостойкость весьма и весьма высока. Блоки, изготовленные в полном соответствии с ГОСТами, способны держаться на поверхности воды 7 суток и более
Морозостойкость
Огромное количество мелких пор обеспечивает воде достаточно возможностей для миграции при замерзании. Благодаря этому свойству пенобетон сохраняет свойства даже при очень низких температурах
Огнестойкость
Пенобетон не горит и не поддерживает горения. Соединения, образующиеся при нагревании пеноблоков, до очень высоких температур не являются токсичным: сам бок способен сопротивляться открытому пламени до 8 часов
Однородность структуры
В отличие от железобетона или керамического кирпича с отверстиями пеноблоки имеют абсолютно однородную мелкопористую структуру по всей толще материала. Это позволяет применять к ним практически все методы механической обработки, включая пиление, сверление, штробление и т.п.
Сферы применения пеноблоков
В настоящий момент пеноблоки широко используются при:
- Возведении стен, несущих нагрузку, а также при создании прочих конструкционных изделий. С этой целью применяют пеноблоки, изготовленные из пенобетона прочностью;
- Возведение стен, не несущих конструкции и создание конструкционно-теплоизоляционных изделий. Подавляющее большинство пеноблоков и плит используется для возведения именно таких конструкций. Плотность пенобетона используемого при их изготовлении колеблется в пределах 600…1100 кг/м. куб;
- Утепления полов и создания теплоизоляционных изделий. В этом случае строители применяют пеноблоки минимальной плотности, поскольку именно они обладают наилучшими теплоизоляционными свойствами;
При копировании информационных материалов прямая ссылка на наш сайт обязательна!
Все тексты сайта охраняются законом — Об авторском праве от 09.07.1993 г. N 5351-1.
Численное и экспериментальное исследование изменения теплопроводности пенополистирола при различных температурах и плотностях
Определение теплопроводности изоляционных материалов в зависимости от того, какие параметры применяются, а также при производстве, очень важно. В этом направлении следует определить параметры, влияющие на теплопроводность, чтобы повысить эффективность изоляционных материалов. Также фактом является то, что блоки из пенополистирола имеют разную теплопроводность при одинаковом значении плотности в зависимости от производственного процесса. В этом исследовании экспериментально и численно было определено, что теплопроводность пенополистирола при различной плотности зависит от параметров и изменений температуры. Пенополистирол состоит из блоков плотностью 16, 21 и 25 кг / м 3 3 и толщиной 20 мм. Измерения теплопроводности проводились на FOX 314 (Laser Comp., США), работающем в соответствии со стандартами ISO 8301 и EN 12667. Измерения проводились для пенополистирольных блоков при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C.Численное исследование состоит из трех этапов: получение электронных микроскопических изображений (SEM) пенополистирольных блоков, моделирование геометрии внутренней структуры с помощью программы CAD и реализация решений с помощью программы ANSYS на основе конечных элементов. Определены результаты экспериментальных и численных исследований, а также параметры, влияющие на теплопроводность. Наконец, считается, что численные методы могут быть использованы для получения предварительного представления о материале EPS при определении теплопроводности путем сравнения результатов экспериментальных и численных исследований.
1. Введение
Рост населения мира и развитие промышленности увеличили потребность в энергии. Эта потребность вызывает потребление энергоресурсов и наносит серьезный ущерб окружающей среде. Энергия должна использоваться эффективно, чтобы уменьшить воздействие на окружающую среду из-за ограниченных ресурсов. Энергия потребляется в различных сферах, таких как промышленность, транспорт, сельское хозяйство, недвижимость и другие секторы. В развитых странах потребление энергии в домах составляет примерно 30% [1, 2]; поэтому снижение энергопотребления в зданиях важно как для экономики, так и для окружающей среды.Утепление, сделанное с целью минимизировать теплопотери в домах, — очень важный вопрос. Сегодня в качестве критериев оценки используются многие характеристики изоляционных материалов, такие как теплопроводность, толщина, пористость, прочность, звукопроницаемость и огнестойкость. Среди этих критериев на первый план выходит теплопроводность — главная характеристика изоляционных материалов.
Теплопроводность изоляционных материалов, используемых для домов, определена в среднем на уровне 10 ° C в соответствии с европейскими стандартами [3].Однако с учетом климатических условий средний температурный интервал колеблется от 0 ° C до 50 ° C. Исследование теплопроводности изоляционных материалов при различных температурах важно для эффективного использования энергии. В последнее время особую популярность приобрели пенопластовые изоляционные материалы из-за их низкой теплопроводности, и они широко используются, потому что технология производства пенополистирола проста, стоимость производства невысока [4], поры материала закрытые, материал непрочен. водонепроницаемы, и они обладают низкой теплопроводностью из-за содержащегося в них воздуха [5–10].
Теплопроводность материала изменяется в зависимости от определенных микроскопических параметров: величины ячейки, порядка расположения ячеек, свойств теплового излучения и свойств клеящего материала [11]. Кроме того, поведение мономера стирола в его твердой фазе в зависимости от температуры существенно влияет на теплопроводность пенополистирола, а также воздуха в нем [3]. Изменение теплопроводности и механических свойств материалов определяли по плотности и производственным параметрам [12].Экспериментально установлено, что теплопроводность уменьшается с увеличением плотности [13] и увеличивается или уменьшается с изменением критической толщины материала [7, 14]. Таким образом, необходимо изучить взаимосвязь между температурой и плотностью теплопроводности пенополистирола, используемого для изоляции в домах.
Очень важно правильно оценить значение теплопроводности. Измерения удельной теплопроводности были определены крупными исследователями [6, 12].Существует много разных типов изоляционных материалов с разной структурой материала и с разными тепловыми свойствами. Чтобы получить правильные результаты, необходимо определить метод измерения в соответствии со всеми этими критериями. Значение теплопроводности можно определить тремя различными методами: экспериментальным, численным и аналитическим. Конкретный используемый метод зависит от типа материала. В литературе обычно используются экспериментальные методы для определения теплопроводности изоляционных материалов [3, 6, 7, 11, 13, 15], но существует также ограниченное количество фундаментальных исследований, проводимых путем изучения внутренней структуры с использованием численных методов. методы, а также экспериментальные [15–17].
За исключением нескольких исследований, определяющих теплопроводность численно, исследования в литературе обычно проводились экспериментально. В этом исследовании были использованы экспериментальные и численные методы, а затем проведено сравнение для определения теплопроводности пенополистирола. Было детально рассмотрено, верны ли численные методы или нет. При проведении численного исследования были изучены изображения, полученные с помощью сканирующего электронного микроскопа (СЭМ), и исследование было проведено с помощью конечно-элементного анализа на основе программы ANSYS с учетом температурно-зависимого изменения теплопроводности воздуха и полистирольного материала. в пенополистироле.Изменение теплопроводности пенополистирола исследовали при различных плотностях и температурах. Были определены параметры, которые влияют на теплопроводность пенополистирола, и было получено понимание того, что следует делать для производства материалов с более низкой теплопроводностью.
2. Материал и метод
Пенополистирол, использованный для исследований, был произведен компанией TIPOR (Турция) и имел толщину 20 мм и плотность 16, 21 и 25 кг / м 3 .
Для экспериментального определения теплопроводности материала EPS при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C использовались образцы размером 10 мм. Перед проведением измерений образцы подвергали сушке при 70 ° C в вентилируемой печи для полного удаления влаги. Измерения массы проводились с 24-часовыми интервалами во время процесса сушки, и он продолжался до тех пор, пока разница не стала менее 0,2%. Когда желаемый интервал измерения был достигнут, процесс сушки был завершен и начались процессы измерения теплопроводности. В экспериментальных исследованиях использовался прибор FOX 314 (Laser Comp., США), работающий по стандарту ISO 8301 и измерения по принципу метода горячей пластины [18]. В этом методе количество теплового потока, возникающего в результате разницы температур между горячей и холодной пластинами устройства, измерялось с помощью датчиков, а теплопроводность рассчитывалась с использованием одномерного уравнения теплопередачи Фурье. Для определения теплопроводности образцов было проведено пять независимых измерений.Значение теплопроводности образцов рассчитывалось как среднее из пяти значений измерения.
Применение численных методов, используемых для определения теплопроводности пенополистирола, было проведено с помощью блок-схемы, представленной на рисунке 1. Программа ANSYS 16.1 на основе конечных элементов использовалась для применения численных методов, Программа AutoCAD 2016 использовалась при моделировании геометрии, а программа Matlab 2016 использовалась при анализе изображений.
Образцы, подготовленные для моделирования геометрии, были вырезаны в форме тонкой пластины для получения изображений их внутренней структуры, и они были прикреплены к медной полосе, поверхность которой была покрыта тонким слоем. в устройстве для позолоты. После процесса нанесения покрытия изображения были получены с разным коэффициентом масштабирования для образцов с разной плотностью в сканирующем электронном микроскопе (SEM). Полученные изображения под электронным микроскопом были исследованы, изучена внутренняя структура материала, проведен анализ изображений и создана геометрическая модель.Исследование пикселей на изображении проводилось в соответствии с цветовыми тонами в анализе изображения во время геометрического моделирования, и пределы воздуха и полистирола, образующего пенополистирол, стали более понятными. Геометрическое моделирование проводилось в программе AutoCAD 2016 с использованием изображений, полученных в результате анализа изображений. Были сделаны некоторые исключения, чтобы минимизировать ошибки в формировании геометрии, и изменения произошли в ограниченных наборах. Таким образом, было сформировано множество моделей и проведено исследование модели, удобной для изучения.
Перенос моделей, геометрия которых формировалась программой ANSYS, производился для формирования сетевых структур и необходимых граничных условий. Треугольные элементы использовались для областей, образованных воздухом, который формировал поры, и полистирольными материалами из пор, а растворы наносили в узловую точку в соответствующих количествах для достоверности результатов.Во время процесса решения необходимые граничные условия были определены для правой и левой стенок сформированной модели относительно достижения средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C, как показано на рисунке 2. Для верхней и нижней стенок были заданы граничные условия изоляции, реализованы одномерные решения. Транспорт и теплопередача незначительны, если диаметр ячейки примерно на 4 мм меньше [8]. В результате пренебрежение теплопередачей, поскольку она намного ниже при естественном переносе, не было ошибочным принятием с точки зрения правильности результатов.
Граничные условия следующие:
Температура и изменяющаяся ситуация были приняты во внимание при определении свойств материалов для компонентов, образующих пенополистирол, необходимых во время численных решений. Свойства материала для воздуха и полистирола, образующего пенополистирол, приведены в таблицах 1 и 2.
|
|
3. Результат и обсуждение
9000 Результаты экспериментовЗначение теплопроводности высушенного пенополистирола с различными значениями плотности было экспериментально измерено для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C с использованием метода измерения теплового потока. .Полученные результаты измерений приведены в таблице 3 и на рисунке 3 в зависимости от температуры.
|
Для каждого значения плотности пенополистирола в зависимости от температуры наблюдалось линейное распределение. В результате этого исследования степень падения или увеличения была определена с использованием метода регрессии. Таким образом, остатки, выраженные как функция температуры, представлены в следующих уравнениях. Значение теплопроводности может быть определено с коэффициентом погрешности всего 0,1%, используя балансы (уравнения), полученные с помощью метода регрессии.
3.2. Измерения SEM
Изображение под электронным микроскопом, приведенное на рисунке 4, было получено из пенополистирола плотностью 25 кг / м 3 в приблизительном соотношении величин, чтобы получить представление о внутренней структуре с точки зрения проведения численных расчетов. исследования.
При изучении рисунка 4 стало понятно, что структура пор не является однородной и имеет две разные структуры пор для пенополистирола. Когда изображение, полученное с помощью электронного микроскопа, было получено с более близким коэффициентом увеличения, в котором структура пор представляет собой неправильную макропору, можно было наблюдать, что оно имеет ячеистые поры, как показано на рисунке 5. Когда изображения, полученные в результате сканирующего электронного микроскопа ( SEM), было обнаружено, что зона, показанная черным цветом, была воздушной текучей средой, а оставшаяся зона белого цвета была твердым материалом из полистирола.
Общеизвестно, что диаметр пор на микроуровне у пенополистирола изменяется от 100 до 300 мкм м, а диаметр пор уменьшается с увеличением плотности [8, 17]. Когда была исследована внутренняя структура пенополистирола с различными значениями плотности, было обнаружено, что размеры пор уменьшаются из-за увеличения плотности, как показано в литературе, как показано на Фигуре 6. Многие изображения, полученные с помощью электронного микроскопа, были исследованы с 16, 21 и 25 кг / м 3 для пенополистирола, и было определено, что средний диаметр ячеистых пор составляет приблизительно 141 мкм м, 116 мкм м и 95 мкм м, соответственно.
В результате исследований был сделан выбор правильной модели, в которой более четкое различие между воздухом и полистиролом было сделано для расчета геометрии внутренней конструкции. Выбранные изображения и изображения, полученные в результате обработки изображений, показаны на Рисунке 7.
Дизайн геометрической модели был получен с использованием изображений электронного микроскопа, которые были переданы в программу ANSYS и для которых были реализованы численные решения. При проведении численных решений предполагалось, что передача тепла происходит только через трансмиссию.Значение теплопроводности было найдено численно, рассматривая его как проблему теплопередачи: определяя одномерный тепловой поток или распределение температуры и используя уравнение теплопередачи Фурье.
Здесь был определен как средний тепловой поток, рассчитанный в программе ANSYS, был определен как разница температур между левой и правой стенками образцов и была определена как длина в направлении теплопередачи.
Решения были сделаны для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C для смоделированной геометрии.Было определено среднее количество теплового потока, передаваемого в результате решений, и значение эффективной теплопроводности было численно рассчитано для каждого образца и значения температуры с помощью уравнения 3. Данные, полученные с помощью численных решений, можно найти в таблицах 4, 5, и 6 и рисунки 8, 9 и 10. Данные измерения теплопроводности, использованные для подтверждения результатов этого исследования, доступны у соответствующего автора по запросу.
|
|
|
По результатам изменения теплопроводности с плотностью показано на рисунке 11.
4. Выводы
Знание того, какие факторы изменяют значение теплопроводности, является очень важным вопросом, важным параметром для материалов, используемых для уменьшения потерь энергии. В результате исследований известно, что значение теплопроводности изменяется в зависимости от распределения, размера и соотношения пор для материалов с пористой структурой, а исследований пенополистирола (EPS) недостаточно. Все данные, полученные или проанализированные в ходе этого исследования, включены в эту опубликованную статью.
На изображениях внутренней структуры пенополистирола с различными значениями плотности было определено, что компоненты материала состоят из полистирола и большого количества воздуха. Как упоминалось в литературе, если пористость исследуется на макроуровне, степень пористости составляет около 4-10%, а микропористость, как известно, составляет от 97 до 99% [17]. Причина различных значений плотности пенополистирола связана с количеством содержащихся в нем пор.
Причина, по которой при исследовании пенополистирола наблюдаются разные значения плотности, связана с количеством содержащихся в нем пор.Было обнаружено, что количество пор уменьшается с увеличением значения плотности. Кроме того, тот факт, что диаметр пор ячеек уменьшается с увеличением плотности, подтверждается изображениями, полученными с помощью электронного микроскопа. Из результатов видно, что значение теплопроводности экспериментально уменьшается в результате увеличения плотности. Здесь ожидается, что из-за увеличения плотности количество пор уменьшается, а за счет этого увеличивается и значение теплопроводности.Можно сделать вывод, что причина различий между материалами из пенополистирола заключается в том, что передача тепла осуществляется только с теплопроводностью между двумя одинаковыми твердыми поверхностями; плотность увеличивается, потому что перенос, происходящий в твердом материале и пограничных слоях воздуха, и скорость воздуха находятся на очень низком уровне, а теплопередача с конвекцией находится на пренебрежимо низком уровне в результате уменьшения диаметров ячеистых пор с увеличением по плотности.
При сравнении результатов, полученных с помощью экспериментальных и численных исследований, было определено, что они совпадают между собой между значениями 1% и 5%.Причины этой ошибки связаны с двумерными структурами численного исследования, исключениями, сделанными во время моделирования, и определенными характеристиками материалов компонентов.
В литературе видно, что теплопроводность пенополистиролов одинаковой толщины и разной плотности различна [3, 6, 7]. Когда были исследованы внутренние структуры различных образцов с разной плотностью, было решено, что причина, по которой они имеют разную теплопроводность, может быть связана с диаметром пор ячеек [14].Было определено, что значение теплопроводности для пенополистирола зависит от размеров ячеистых пор материала, изменения температурных и тепловых свойств компонентов и массива пор, и для этого можно использовать численные методы. получить предварительное представление при определении теплопроводности.
Доступность данных
Экспериментальные данные, использованные для подтверждения результатов этого исследования, включены в статью. Числовые данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Благодарности
Эта работа была поддержана Отделом координации научно-исследовательских проектов Университета Кырыккале (грант №: 2016/114).
Исследование свойств пенобетонного блока с фазовым переходом, смешанного с композитным материалом с фазовым переходом парафин / коллоидальный диоксид кремния
Основные моменты
- •
Композитный ПКМ парафин / коллоидный диоксид кремния был успешно добавлен во вспененный цемент.
- •
PCM может снизить способность пенобетона к теплопередаче и повысить его способность аккумулировать тепло.
- •
Пеноблоки с фазовым переходом могут уменьшить колебания температуры в помещении, отсекая пиковую температуру наружного воздуха.
Реферат
Системы производства возобновляемой энергии на месте устанавливаются для зданий, чтобы компенсировать потребление энергии из-за нагрузок на охлаждение и обогрев.Колеблющаяся энергетическая нагрузка может существенно повлиять на решение о выборе систем возобновляемой энергии. В рамках этого исследования был разработан новый пенобетон с фазовым переходом с низкой теплопроводностью и подходящей температурой фазового перехода, позволяющий снизить пиковые температуры летом и повысить экономическую целесообразность использования возобновляемых источников энергии. С помощью метода адсорбции в этом исследовании использовался коллоидальный диоксид кремния для поглощения парафина для образования композитных материалов с фазовым переходом (ПКМ). С помощью морфологии и испытаний на утечку жидкости это исследование показало, что композитный ПКМ с содержанием парафина 45% (вес.) Имеет лучшую адсорбционную способность и характеристики схватывания.Согласно испытаниям с помощью сканирующей электронной микроскопии (SEM), металлографической микроскопии и порошковой рентгеновской дифракции (XRD) предлагаемые композитные блоки из ПКМ и пенобетонных блоков с фазовым переходом имеют стабильные морфологические структуры и физические свойства. Кроме того, дифференциальный сканирующий калориметр (ДСК) показал, что предлагаемый композитный ПКМ в бетоне имеет подходящую температуру фазового перехода (около 41 ° C) и скрытую теплоту фазового перехода (эндотермический процесс составляет 113,3 Дж / г, а экзотермический процесс — -112 Дж. / г) во избежание перегрева здания летом.Наконец, эксперименты по теплопроводности и нагреву показали, что предлагаемые пенобетонные блоки с фазовым переходом имеют низкую теплопроводность и высокую способность аккумулировать тепло.
Ключевые слова
Пушистый диоксид кремния
Композитный ПКМ
Пенобетон с фазовым переходом
Теплоаккумулятор
Рекомендуемые статьиЦитирующие статьи (0)
Полный текст© 2020 Elsevier Ltd. Все права защищены.
Рекомендуемые статьи
Цитирующие статьи
Теплопроводность водной пены (Технический отчет)
Дротнинг, У.Д., Ортега, А., и Хавей, П. Э. Теплопроводность водной пены . США: Н. П., 1982.
Интернет. DOI: 10,2172 / 5347949.
Дротнинг, В. Д., Ортега, А., и Хейви, П. Е. Теплопроводность водной пены . Соединенные Штаты. https://doi.org/10.2172/5347949
Дротнинг, У.Д., Ортега, А., и Хавей, П. Э.Сидел .
«Теплопроводность водной пены». Соединенные Штаты. https://doi.org/10.2172/5347949. https://www.osti.gov/servlets/purl/5347949.
@article {osti_5347949,
title = {Теплопроводность водной пены},
author = {Дротнинг, В.Д. и Ортега, А. и Хавей, П.Е.},
abstractNote = {Теплопроводность играет важную роль в реакции водных пен, используемых в качестве геотермальных буровых растворов. Теплопроводность этих пен измерялась в условиях окружающей среды с использованием метода зонда теплопроводности. Изучаемая плотность пены составляла от 0,03 до 0,2 г / см / sup 3 /, что соответствовало объемным долям жидкости такой же величины. Микроскопия пен показала размеры пузырьков в диапазоне от 50 до 300 мкм для азотных пен и от 30 до 150 мкм для гелиевых пен. Формы пузырьков были многогранными при низких плотностях пены и сферическими при более высоких плотностях. Измеренные значения проводимости варьировались от 0.От 05 до 0,12 Вт / м-К для исследуемых пен. Прогнозируемое поведение проводимости пены, вызванное изменением проводимости прерывистой газовой фазы, наблюдали с использованием газообразного азота или гелия в пенах. Анализ данных отклика зонда потребовал интерпретации с использованием полного интегрального решения уравнения теплопроводности, поскольку теплоемкость пены была мала по сравнению с тепловой массой зонда. На измерения теплопроводности пен оказывали влияние экспериментальные эффекты, такие как входная мощность зонда, дренаж пены и ориентация зонда и испытательной ячейки. Для азотных пен наблюдалось падение теплопроводности в зависимости от объемной доли жидкости между прогнозами, основанными на модели параллельного упорядочения и модели Рассела для теплопроводности в гетерогенных материалах.},
doi = {10.2172 / 5347949},
url = {https://www.osti.gov/biblio/5347949},
journal = {},
number =,
объем =,
place = {United States},
год = {1982},
месяц = {5}
}
Численное и экспериментальное исследование влияния пенобетона в качестве наполнителя на расчетную теплопроводность легкого кирпичного блока
İzoder. Теплоизоляция зданий и сооружений. Турция: Изодер; 2013.
Google Scholar
Энергоэффективность в мире и Турции, Отчет палаты, TMMOB Mechanical Eng. Палата, Паб. Номер: MMO / 589; Апрель 2012.
ТУ 825. Требования к теплоизоляции зданий. Анкара: Турецкий институт стандартов; 2008.
Google Scholar
TS EN ISO 6946. Строительные компоненты и строительные элементы — тепловое сопротивление и коэффициент теплопередачи — метод расчета. Анкара: Турецкий институт стандартов; 2012.
Google Scholar
TS EN 1745. Каменная и каменная кладка — методы определения расчетных тепловых значений. Анкара: Турецкий институт стандартов; 2004.
Google Scholar
TS EN ISO 8990.Теплоизоляция — определение устойчивых характеристик теплопередачи — откалиброванная и охраняемая горячая камера. Анкара: Турецкий институт стандартов; 2002.
Google Scholar
Zukowski M, Haese G. Экспериментальное и численное исследование пустотелого кирпича, заполненного перлитовой изоляцией. Энергетика. 2010; 42: 1402–8. https://doi.org/10.1016/j.enbuild.2010.03.009.
Артикул Google Scholar
Дель Коз Диас Дж. Дж., Гарси Ньето П. Дж., Бетегон Бьемпика С., Прендес Геро МБ. Анализ и оптимизация конструкции стен из пустотелого теплоизоляционного легкого бетона методом конечных элементов. Appl Therm Eng. 2007; 2007 (27): 1445–56. https://doi.org/10.1016/j.applthermaleng.2006.10.010.
Артикул CAS Google Scholar
Аль-Хадрами Л.М., Ахмад А. Оценка тепловых характеристик различных типов кирпичной кладки, используемых в Саудовской Аравии.Appl Therm Eng. 2009; 29: 1445–56. https://doi.org/10.1016/j.applthermaleng.2008.06.003.
Артикул CAS Google Scholar
Свобода З., Кубр М. Численное моделирование теплопередачи через пустотелый кирпич в вертикальном направлении. J Build Phys. 2010. 34 (4): 325–50. https://doi.org/10.1177/1744259110388266.
Артикул Google Scholar
Li LP, Wu ZG, Li ZY, He YL, Tao WQ.Численная термическая оптимизация конфигурации многослойного глиняного кирпича, используемого для возведения стен зданий методом конечных объемов. Int J Heat Mass Transf. 2008. 51: 3669–82. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.008.
Артикул Google Scholar
Бушар А. Теоретическая модель устойчивого состояния пустотелых кирпичей из обожженной глины для улучшенной теплоизоляции наружных стен. Сборка Environ. 2008; 43: 1603–18.https://doi.org/10.1016/j.buildenv.2007.10.005.
Артикул Google Scholar
Lakatos Á. Теплопроводность утеплителей подошла с новой точки зрения. J Therm Anal Calorim. 2018; 133: 329. https://doi.org/10.1007/s10973-017-6686-5.
Артикул CAS Google Scholar
Лакатош А., Чаки И., Калмар Ф. Измерения теплопроводности различными методами: процедура оценки времени задержки.Mater Struct. 2015; 48: 1343. https://doi.org/10.1617/s11527-013-0238-7.
Артикул CAS Google Scholar
Lakatos Á. Влияние размещения утеплителя из аэрогеля на теплообменные свойства. J Therm Anal Calorim. 2018; 133: 321. https://doi.org/10.1007/s10973-017-6745-y.
Артикул CAS Google Scholar
Davraz M, Kılınçarslan Ş, Koru M.Прочностные и теплопроводные свойства пенобетонов разной плотности. В: 9-я Международная конференция по бетону 2015; 93–102, Анталия.
Рамамурти К., Кунханандан Намбиар Е.К., Ранджани ГИС. Классификация исследований свойств пенобетона. Cem Concr Compos. 2009. 31: 388–96. https://doi.org/10.1016/j.cemconcomp.2009.04.006.
Артикул CAS Google Scholar
Джонс М.Р., Маккарти А.Предварительные взгляды на потенциал пенобетона как конструкционного материала. Mag Concr Res. 2005. 57 (1): 21–31.
Артикул CAS Google Scholar
Kearsley EP, Wainwright PJ. Влияние пористости на прочность пенобетона. Cem Concr Res. 2002; 32: 233–9. https://doi.org/10.1016/S0008-8846(01)00665-2.
Артикул CAS Google Scholar
Nambiar EKK, Ramamurthy K. Сорбционные характеристики пенобетона. Cem Concr Res. 2007; 37: 1341–7. https://doi.org/10.1016/j.cemconres.2007.05.010.
Артикул CAS Google Scholar
Just A, Middendorf B. Микроструктура высокопрочного пенобетона. Mater Charact. 2009; 60: 741–8. https://doi.org/10.1016/j.matchar.2008.12.011.
Артикул CAS Google Scholar
Jing Liu MY, Alengaram UJ, Jumaat MZ, Mo KH. Оценка теплопроводности, механических и транспортных свойств легкого заполнителя пеногеополимерного бетона. Энергетика. 2014; 72: 238–45. https://doi.org/10.1016/j.enbuild.2013.12.029.
Артикул Google Scholar
Чен Б., Лю Н. Новое производство легкого бетона и его термические и механические свойства. Constr Build Mater. 2013; 44: 691–8. https: // doi.org / 10.1016 / j.enbuild.2013.12.029.
Артикул Google Scholar
Саяди А.А., Тапиа СП, Нейтцерт Т.Р., Клифтон К.Г. Влияние частиц пенополистирола (EPS) на огнестойкость, теплопроводность и прочность пенобетона на сжатие. Constr Build Mater. 2016; 112: 716–24. https://doi.org/10.1016/j.conbuildmat.2016.02.218.
Артикул CAS Google Scholar
Павлик З., Джерман М., Трник А., Кочи В. , Черны Р. Эффективная теплопроводность пустотелого кирпича с полостями, заполненными воздухом и пенополистиролом. J Build Phys. 2014. 37 (4): 436–48. https://doi.org/10.1177/1744259113499214.
Артикул Google Scholar
TS EN 12664. Тепловые характеристики строительных материалов и изделий — определение термического сопротивления с помощью методов охраняемой горячей плиты и теплового расходомера — сухие и влажные продукты среднего и низкого термического сопротивления.Анкара: Турецкий институт стандартов; 2009.
Google Scholar
Исследование панелей из жесткого пенопласта / вакуумированного порошкового композитного материала для теплоизоляции.
Берк, М., 1990, «Изоляция на основе порошка кремнезема, вакуумно упакованная в тонкое стекло», магистерская диссертация, Отдел машиностроения, Массачусетский институт технологий, Кембридж, Массачусетс.
Google Scholar
Гликксман, Л. Р. и Острогорский А.Г., 1989, «Изменение во времени изоляционных свойств пенопласта с закрытыми ячейками», Журнал теплоизоляции , Vol. 12. С. 270–283.
Google Scholar
Гликсман, Л.Р., Брем, Т.Р. и Острогорский, А.Г., 1989, «Теплоизоляция: деградация пенопласта со временем и влияние экологических норм на свойства пенопласта», Труды XI Международного конгресса CIB , Париж , Франция.
Гликксман, Л. Р. и Пейдж, М. К., 1989, «Влияние альтернативных вспенивающих агентов на старение вспененной изоляции с закрытыми порами», Труды Международной конференции по теплопроводности , Лексингтон, Кентукки.
Гликксман, Л. Р., 1991, «Двумерные эффекты теплопередачи на вакуум и отражающую изоляцию», Journal of Thermal Insulation , 14, стр. 281–294, апрель.
Google Scholar
Макелрой, Д.Л., Ярбро, Д.В., Коупленд, Г. Л., Уивер, Ф.Дж., Грейвс, Р.С., Тонг, Т.В. и Файн, HA, 1984, «Разработка усовершенствованной теплоизоляции для бытовых приборов», Технический отчет ORNL / CON-159 , Дуб Национальная лаборатория Ридж, Ок-Ридж, Теннесси.
Google Scholar
Нобороу К., 1986, Метод конечных элементов в механике , Cambridge University Press, Кембридж / Нью-Йорк.
Google Scholar
Solomou, N., 1993, «Разработка передовых систем изоляции: панели из вакуумированного порошка, заключенные в тонкий стеклянный барьер», тезисы магистратуры, факультет машиностроения, Массачусетский технологический институт, Кембридж, Массачусетс.
Google Scholar
Tecplots User’s Manual, Version 6.9, Amte Engineering, Inc., P.O. Box 3633, Bellevue WA 98009-3633.
Заммит, М., 1992, «Разработка порошковой вакуумной панельной изоляции, заключенной в тонкий стеклянный барьер», М. С. Диссертация, факультет машиностроения, Массачусетский технологический институт, Кембридж, Массачусетс.
Google Scholar
Теплопроводность легкого бетона в зависимости от влажности материала — Международный журнал психосоциальной реабилитации
Том 24 — Выпуск 8
Теплопроводность легкого бетона в зависимости от влажности материала
Гайрат Шукуров, Мусаев Шароф Мамараджабович, Егамова Маргуба Туракуловна, Хаджиматова Мавлудахон МамасольевнаАннотация
В статье представлены результаты теоретических и лабораторных полевых теплофизических исследований, а также определены коэффициенты теплопроводности легкого бетона.На приборе «ФЕЙТРОН» исследована зависимость коэффициента теплопроводности керамзитобетона от влажности по методике, основанной на стационарном тепловом режиме, разработанной в МНИИ строительной физики на образцах плит размером 25x25x5 см. При этом для бетона выбрано пять степеней влажности в диапазоне влажности от абсолютно сухой до 2, 5, 10 и 15% влажности в диапазоне плотностей керамзитобетона от 700 до 1300 кг / м3.Кроме того, с помощью прибора «ИТС-1» — измерителя теплопроводности были проведены исследования по определению зависимости коэффициента теплопроводности пенобетона от влажности материала. Прибор «ИТС-1» предназначен для измерения теплопроводности и термического сопротивления строительных и теплоизоляционных материалов методом стационарного теплового потока по ГОСТ 7976-99. Исследования проводились по методике, разработанной представителями в Москве (НИИЖБ) и Санкт-Петербурге.Петербург. Принцип работы устройства основан на создании стационарного теплового потока, проходящего через исследуемый плоский образец. Для определения коэффициента теплопередачи в зависимости от влажности материала были изготовлены образцы керамзита плотностью от 700 до 1300 кг / м3 и пенобетонные блоки плотностью 600-700 кг / м3 из местного сырья. В результате исследований предложены эмпирические формулы для определения теплопроводности керамзитобетона плотностью 700, 740, 900, 1050 и 1300 кг / м3 и пеноблоков плотностью 600–700 кг / м3. в зависимости от влажности материала.
Детали бумаги
Объем: Объем 24 Выпуски: Выпуск 8 Ключевые слова: Теплопроводность легкого бетона в зависимости от влажности материалаТеплопроводность — ERG Aerospace
Общая теплопроводность Ctotal пенопласта с открытыми ячейками фактически состоит из четырех компонентов, как указано ниже:
Ctotal = Csolid связок + Cgas + Cgas конвекция + Cradiant
Где
Csolid связок = проводимость трехмерного массива твердых связок или распорок, которые образуют структуру пены.Этот термин также часто называют «объемной теплопроводностью» пены. В большинстве случаев, особенно для металлических пен, используемых в качестве теплообменников, это самый крупный в количественном отношении и наиболее термически доминирующий из четырех компонентов и имеет следующую упрощенную форму уравнения:
Csolid связок = Csolid × относительная плотность × 0,33
Где
Csolid связок = прямая теплопроводность или объемная проводимость массива связок
Csolid = проводимость твердого материала подкосов
Относительная плотность =% относительной плотности в десятичной форме, т.е.е. 10% = .1
.33 = коэффициент, представляющий геометрическую структуру пены или фактор «извилистости».
Следует отметить, что коэффициент 0,33 получен как из испытаний на проводимость, так и из концептуального анализа, в котором пену можно сравнить с трехмерной ортогональной решеткой штифтовых ребер. В этом случае очевидно, что одна треть штифтов или их массы ориентирована в каждом из ортогональных направлений x, y и z.
Следует также отметить, что это уравнение несколько упрощено, но является достаточно точным, немного консервативным и более легким для понимания с концептуальной точки зрения, чем некоторые из эмпирических уравнений, разработанных на основе различных тестов.
Cgas = объемная проводимость любого газа, содержащегося в пене с открытыми порами. Обычно он вносит небольшой вклад в металлические пены, но может вносить значительный вклад в углеродные или керамические пены, которые по своей природе имеют низкую проводимость связочного материала. См. Диаграмму проводимости угольной пены (RVC), чтобы увидеть типичный пример этого эффекта.
Cгазовая конвекция = проводимость любого газа, содержащегося внутри ячеек и который может циркулировать внутри пены или внутри отдельных ячеек пены.Опять же, это также небольшой вклад для металлических пен, но может стать значительным при работе с углеродными или керамическими пенами, используемыми в качестве изоляции. В таких случаях пеноматериалы с малым размером пор 80–100 PPI используются для подавления этого эффекта, просто увеличивая удельную поверхность пенопласта и падение давления газового потока до точки, при которой конвективный поток эффективно предотвращается.
Cradiant = инфракрасное электромагнитное излучение, которое проходит через открытые отверстия пены. Этот элемент проводимости важен только при очень высоких температурах и обычно не играет роли, если пена не используется в качестве высокотемпературной изоляции.В таких случаях обычно используется пена с наименьшим размером пор, чтобы уменьшить коэффициент обзора и увеличить оптическую непрозрачность пены.