Теплоотдача биметаллических батарей: Мощность 1 секции биметаллических радиаторов отопления
Теплоотдача биметаллических радиаторов отопления: таблица
О том, что биметаллические радиаторы отопления являются наиболее дорогими из всех возможных конструкций водяных обогревателей, в том числе алюминиевых, стальных и чугунных, знают не понаслышке все, кому доводилось заниматься ремонтом и заменой домашних батарей. В качестве подтверждения высокой эффективности биметалла обычно приводят условную таблицу теплоотдачи биметаллических радиаторов отопления со ссылками на теплопроводность металлов, и даже на практические измерения температуры воздуха в комнате. Так ли эффективно устройство биметаллического радиатора?
Что представляет собой биметаллический радиатор
По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:
- Обогреватель состоит из двух корпусов – внутреннего стального и наружного алюминиевого;
- За счет внутренней оболочки из стали биметаллический корпус не боится агрессивной горячей воды, выдерживает высокое давление и обеспечивает высокую прочность соединения отдельных секций радиатора в одну батарею;
- Алюминиевый корпус лучше всего передает и рассеивает поток тепла в воздухе, не боится коррозии наружной поверхности.
В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.
В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.
Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.
Насколько выгоден биметаллический радиатор
Нередко для подтверждения высокой теплоотдачи биметаллических радиаторов приводят табличные сведения, приведенные ниже.
Такого рода сведения нередко используются магазинами и рекламой в качестве достоверных данных о теплоотдаче различных систем водяного отопления. О том, что теплоотдача биметаллической секции выше стальной или чугунной конструкции, хорошо известно и без справочных данных, остается только проверить, насколько радиатор из биметалла лучше алюминия. Неужели разница может достигать почти 40%?
Ниже в таблице приведены данные о теплоотдаче на основании практических измерений приборов конкретных моделей радиаторов, в том числе биметаллических, алюминиевых и чугунных систем.
Как видно из таблицы, теплоотдача между самыми крайними позициями радиаторов одного производителя, например, алюминиевого Rifar Alum -183 Вт/м∙К и биметаллического Rifar Base — 204 Вт/м∙К, составляет не более 10%, в остальных случаях разница еще меньше.
От чего зависит теплоотдача радиатора
Прежде чем попытаться оценить и сравнить реальную эффективность биметаллических радиаторов, стоит напомнить, от чего зависит тепловая мощность конкретной отопительной системы:
- Тепловой напор радиатора. Чем выше разница между средней температурой поверхности радиатора и температурой воздуха, тем интенсивнее тепловой поток, передающийся в воздух помещения;
- Теплопроводностью материала радиатора. Чем выше теплопроводность, тем меньше разница между температурой теплоносителя и наружной стенкой радиатора;
- Размерами корпуса;
- Температурой и давлением теплоносителя.
Важно! В водяных системах отопления передача тепла от стенки в воздух осуществляется на 98% за счет конвекции, поэтому, кроме размеров, важна и форма радиатора. Но так как на практике учет конфигурации поверхности учесть сложно, обычно ограничиваются только учетом линейных размеров.
Первый критерий – тепловой напор, рассчитывается, как разность между полусуммой (Твх+Твых)/2 и температурой воздуха в помещении, Твх и Твых – температуры воды на входе и выходе из радиатора. Существует даже поправочный коэффициент, уточняющий теплоотдачу радиатора при расчете мощности системы отопления для комнаты.
Таблица поправочного коэффициента говорит, что заявленные в паспорте величины теплоотдачи биметаллического обогревателя, равно как и алюминиевого, будут соответствовать действительности только в течение первого часа работы отопления, К=1 при перепаде температуры в 70оС, что возможно только в холодном помещении. Теплоноситель редко нагревают выше 85оС, значит, максимальную теплоотдачу можно получить только при температуре воздуха в комнате Т=15оС, либо при использовании специальных видов теплоносителя.
Второй критерий — теплопроводность материала радиаторной стенки. Здесь радиатор из биметалла проигрывает алюминиевому варианту. Устройство биметаллической секции отопления, приведенной на схеме, показывает, что стенка обогревателя состоит из двух слоев — стали и алюминия.
Даже при одинаковой толщине стенки биметаллический корпус в одинаковых условиях не может иметь теплоотдачу выше, чем изготовленный из алюминия.
Размеры обоих типов теплообменников примерно одинаковы и рассчитаны на установку в пространстве под подоконником. Стоит отметить, что конструкция корпусов из биметалла и алюминия имеет значительно большую площадь поверхности, чем у чугунной или стальной модели. Поэтому величина теплоотдачи может отличаться сильнее, чем простой расчет на основании теплотехнических свойств металлов – теплопроводности и теплоемкости.
Остается разобраться с температурой и давлением теплоносителя.
Оптимальные условия эксплуатации для обогревателей из биметалла
Устройство и схемы биметаллических и алюминиевых систем во многом похожи. Внутри корпуса секции изготовлен главный канал, по которому движется разогретый теплоноситель. Форма и размеры канала соответствуют сечению подводящей трубы, а значит, жидкость не испытывает дополнительных завихрений и локальных мест перегрева.
Если посмотреть на данные в таблице, то становится ясно, что оба типа радиаторных конструкций проектируются в расчете на высокое давление и, главное, — высокую температуру теплоносителя. В этом случае преимущества теплообменника из биметалла очевидны. Во-первых, увеличивается разность температур, вместо стандартных 70оС значение теплового напора может легко достигать 100оС. Например, давление и температура теплоносителя на входе систему отопления высотного дома составляет 15-18 Бар и 105-110оС, а для паровых систем и 120оС. Соответственно, поправочный коэффициент эффективности теплоотдачи возрастает до 1,1-1,2, а это почти 20%.
Во-вторых, чем выше давление теплоносителя, тем выше коэффициент теплопередачи и теплоотдачи от жидкости к металлу. Значение теплоотдачи за счет повышения давления может возрастать на 5-7%. В итоге, суммируя все условия, может оказаться, что обогреватель из биметалла идеально подходит для отопления высотных зданий.
Несмотря на то, что производители дают примерно одинаковый срок службы для обоих типов теплообменников, на практике при повышенном давлении и температуре отопления способен работать длительное время только биметалл. Горячая вода даже при наличии присадок и защитного покрытия действует на алюминий разрушительно. Другое дело — сталь с легирующими добавками марганца и никеля, ее срок службы может составлять до 15лет.
Заключение
Высокую теплоотдачу на биметаллическом нагревателе можно получить не только при высоком давлении. Для обоих типов радиаторов, даже для чугунных и стальных конструкций, можно увеличить теплоотдачу минимум на 20%, если использовать в домашних котельных в качестве теплоносителя не воду, а специальные типы тосола или антифриза. Давление не изменится, так и останется 3-4 атм., а температура на выходе из котла увеличится почти до 95-97оС, что даст прибавку в теплоотдаче на 15-20%. Кроме того, тосол обеспечит хорошую сохранность алюминиевых, чугунных, стальных труб и теплообменников.
Теплоотдача биметаллических радиаторов отопления — читать обзорную статью
При выборе радиаторов отопления большинство пользователей ориентируется на оптимальное соотношение цены и эффективности. Среди современных изделий, представленных на рынке, наиболее удачное соотношение имеют биметаллические радиаторы отопления с высокой теплоотдачей.
Почему БИметалл?
Название радиаторов (приставка «би» определяет двоичный характер явления) связано с использованием двух достаточно близких по свойствам, но все же отличающихся материалов — стали и алюминия.
Сплав на основе «черного» металла — сталь — обладает высокими прочностными характеристиками, мало подвержен коррозии благодаря специальным добавкам, стоек к механическим (в том числе ударным) и гидравлическим (высокое давление в трубопроводе) нагрузкам, легко выдерживает значительные перепады температур. При этом его способность отдавать тепло напрямую в воздух относительно мала, зато он хорошо передает тепло другому металлу, соприкасающемуся с ним напрямую.
Алюминий, в отличие от стали, имеет меньшую прочность и способность сопротивляться внешним воздействиям. Он легче окисляется (корродирует), чувствителен к наличию кислот и щелочей в контактной среде. Зато его способность «делиться» теплом в пять, а то и в шесть раз превышает тот же показатель для стали (для сравнения — коэффициент теплопередачи стали составляет 47 Вт/м*К, алюминия — 202-236 Вт/м*К).
Поэтому принцип производства радиаторов основан на удачном сочетании свойств двух металлов:
- Из стали изготавливаются сердечники, трубы, по которым идет теплоноситель. Сплав мало чувствителен к уровню pH жидкости, легко выдерживает гидравлические удары, постоянную нагрузку от веса алюминиевого корпуса.
- Оребрение из алюминия не контактирует с теплоносителем напрямую, поэтому долгое время сохраняет свои химические и физические свойства. Передаваемое от стального сердечника и теплопроводных каналов тепло легкие элементы корпуса равномерно распределяют в пространство.
- Дополняющие друг друга свойства обеспечивают теплоотдачу биметаллических радиаторов отопления на уровне 136-204 Вт от одной секции (зависит от габаритов секции).
Для сравнения чугунные батареи старого образца дают 140-160 Вт тепловой энергии от секции, а чисто алюминиевые — 140-180 Вт.
Размеры
Современные радиаторы из биметалла чаще всего поставляются с межосевым расстоянием (между верхним и нижним коллектором, по которым идет теплоноситель) 300 мм, 350 мм и 500 мм. Иногда встречаются модели с расстоянием 623 мм и 813 мм.
Габариты изделий при этом всегда больше, поскольку алюминиевый корпус выступает сверху и снизу от коллекторов (сердечников) для увеличения общей площади отдающей тепло поверхности.
Для радиаторов с межосевым расстоянием 350 мм можно встретить высоту изделия 400, 423, 425, 430 мм, для межосевого расстояния 500 мм — высоту 550, 560, 572, 575, 580 мм. Таким образом, при выборе биметаллических радиаторов отопления необходимо учитывать не только теплоотдачу, но и габариты модели — ведь вполне может оказаться, что для монтажа под окном (традиционное место установки) радиатор слишком велик.
Важно: расстояние для эффективного отопления помещения от крайних плоскостей прибора обогрева до преграды:
- До подоконника — минимум 50 мм
- До пола — минимум 60 мм
- До стены — минимум 25 мм
Если подоконник шире обычного, то есть полностью перекрывает расположенный под ним отопительный прибор, обязательно увеличение зазора и/или выполнение вентиляционных отверстий в панели подоконника. В противном случае окно будет запотевать, а качество обогрева помещения существенно ухудшится.
Количество секций: расчет по теплоотдаче
Выполнить теплотехнический расчет с необходимой степенью точности, учесть все нюансы может только специалист.
Для получения точных данных, необходима следующая информация:
- Размеры комнаты (площадь).
- Высота потолков.
- Количество и размер окон, балконных блоков, дверей, других проемов; при наличии арочного проема в соседнее помещение расчет усложняется, поскольку вычисления необходимо делать для обоих помещений — через проем идет теплообмен.
- Количество наружных стен и их ориентация по сторонам света.
- Тип наружных стен, характер их утепления (если оно присутствует).
- Высота подоконников для определения необходимого межосевого расстояния радиатора.
- Данные о теплоотдаче 1 секции биметаллического радиатора отопления в соответствии с выбранной моделью.
Однако для «прикидочного» определения необходимого количества секций покупателю достаточно знать только площадь комнаты и теплоотдачу секции. Формула расчета проста:
N = S/P*100, где N — расчетное количество секций
S — площадь помещения в метрах
P — теплоотдача одной секции в ваттах (не киловаттах!)
Результат вычислений не учитывает всех нюансов, перечисленных в списке выше, поэтому полученную цифру необходимо умножить на коэффициент запаса 1,1-1,2 и округлить до ближайшего целого числа.
Интересно, что специалисты часто рекомендуют использовать такое же количество секций, какое было в заменяемых радиаторах. Такой совет связан с тем, что при выборе числа секций проводились аналогичные теплотехнические расчеты.
Тем не менее, сравнивая теплоотдачу чугунных и биметаллических радиаторов отопления, несложно заметить — новых изделий потребуется меньше за счет их большей эффективности.
Очень важно при выборе модели и количества секций радиатора иметь в виду температуру теплоносителя. Для частного дома этот параметр можно выставить самостоятельно (при наличии автономной системы отопления), а вот для многоквартирных зданий, обслуживаемых коммунальными службами, необходимы предварительные замеры.
Важно: теплоотдача биметаллических радиаторов отопления, как и любых других, указывается для определенной температуры теплоносителя в системе. Если иное не указано, подразумевается температура 90/70 градусов Цельсия. Это значит, что на подаче воды в радиатор теплоноситель должен иметь температуру 90 градусов, на выводе — 70 градусов. Данные параметры соблюдаются не всегда, поэтому перед выполнением расчетов необходимо уточнить информацию у поставщика услуги или путем замеров.
При недостаточном нагреве теплоносителя эффективность биметаллических радиаторов отопления падает до 10-50%.
С САНТЕХПРОМ выгодно!
Наша компания — один из ведущих поставщиков биметаллических радиаторов отопления с повышенной теплоотдачей. В ассортименте САНТЕХПРОМ имеются модели с межосевым расстоянием 300 и 500 мм, глубиной 90, 95 и 100 мм. Ширина секции во всех моделях составляет 80 мм.
Различия в тепловой отдаче одной секции позволяют без проблем подобрать необходимый вид радиаторов и нужное количество секций без переплат.
Наши специалисты помогут с расчетом и подбором подходящей модели, проконсультируют по способам подключения, порекомендуют необходимые дополнительные комплектующие. Звоните по телефону +7 (495) 730-70-80 сегодня, чтобы зимой в Вашем доме было тепло!
Какая теплоотдача биметаллических радиаторов отопления? Обзор и что лучше и как рассчитать: Виды +Видео
Теплоотдача биметаллических радиаторов отопления: какие лучше? Многие из тех, кому приходилось заниматься заменой и ремонтом батарей, не понаслышке знают, что самыми дорогими из всех доступных водяных конструкций обогревателей (среди которых стальные, чугунные и алюминиевые) являются именно биметаллические радиаторы отопления.
Для наглядного подтверждения того, что биметаллические батареи эффекты, есть условная таблица теплоотдачи, где указаны данные о биметаллических радиаторах, теплопроводность других металлов и измерение температуры воздуха. Действительно ли это устройство настолько эффективно?
Что это такое?
По своей сути, биметаллический обогревать – это смешанный тип конструкции, который смог воплотить в себе преимущества алюминиевой и стальной системы отопления.
Именно на этих элементах основано устройства радиатора:
Обогреватель, который состоит их 2-х корпусов – наружного (алюминиевого) и внутреннего (стального).
- Благодаря крепкой внутренней оболочке из стали корпус конструкции не боится воздействия сильно горячей воды, может выдерживать даже высокое давление и дает отличные показатели прочности соединения каждых секций радиатора в единую батарею.
- Корпус из алюминия отлично передает и рассеивает тепло в воздухе, не подвержен коррозии снаружи.
Для подтверждения того, какая теплоотдача у биметаллических радиаторов отопления, была создана сравнительная таблица. Ближайшее и сильнейшие конкурента – это радиатор из ЧГ чугуна, из алюминия АЛ и АА, стали ТС, но биметаллический радиатор БМ имеет лучшие показатели теплоотдачи, хорошие данные рабочего давления и стойкость к коррозии.
Интересно, что почти во всех таблицах есть сведения производителей об уровне теплоотдачи, которые приведены к стандарту в виде высоты радиатора 0.5 м и разница температур 70 градусов.
Но на самом деле все куда хуже, так как в последнее время 70% производителей указывают теплоотдачу тепловой мощности на одну секцию и за час, т.е. данные могут существенно отличаться. Делается это специально, данные специально не приводят для упрощения восприятия покупателя, чтобы тому не пришлось высчитывать данные о том или ином радиаторе.
Выгоден ли биметаллический радиатор и насколько?
Чтобы подтвердить высокие показатели теплоотдачи, часто приводят данные с таблиц.
Материал, из которого изготовлен радиатор отопления | Показатели теплоотдачи (Вт/м*К) |
Чугун | 53 |
Сталь | 66 |
Алюминий | 230 |
Биметалл | 380 |
Такие сведения, которые выгодно отличаются на фоне «собратьев» часто используют и для рекламы в роли достоверных данных о теплоотдаче различных систем водяного отопления. Хотя о том, что теплоотдача биметаллических радиаторов выше, чем у аналогов, хорошо известно всем и без данных из справочника, но неужели разница и правда может быть до 40%?
Если рассмотреть таблицу из справочника, то видно, что самая большая разница в теплоотдаче – это 10%, но никак не 40%.
От чего зависит фактор теплоотдачи
Перед тем, как попытаться оценить или сравнить эффективность теплоотдачи биметаллического радиатора, напомним, от чего зависит тепловая мощность отопительной системы:
- Тепловой напор радиатора играет следующую роль – выше больше разница между температурой воздуха и средних данных температуры поверхности, тем сильнее тепловой потом, который передается в воздух помещения.
- Теплопроводность материала, из которого выполнен радиатор – чем выше показатель теплопроводности, тем меньше будет разница между наружной стенкой радиатора и температурой носителя.
- Размеры обогревательной системы и количество секций.
- Давление и температура теплоносителя.
Обратите внимание, что в тех системах отопления, где используют воду, на 98% передача тепла от стенок к воздуху осуществляется за счет конвенции, поэтому помимо размеров очень важна и форма. Но на практике достаточно сложно учесть все конфигурации, поэтому используют только линейный учет размеров.
Тепловой напор — это первый критерий, который рассчитывают как разность полусумм и температуры воздуха в помещении. Есть даже определенный поправочный коэффициент, который помогает уточнить теплоотдачу радиатора при расчете мощности системы для комнаты.
По таблице поправочных коэффициентов можно сделать вывод, что те данные о теплоотдаче биметаллического радиатора будут соответствовать реальности только при первом часе работы системы отопления, так как такие данные возможны только при перепаде температур в холодном помещении. Обычно теплоносители редко нагреваются выше, чем 85 градусов, а значит, максимальная отдача тепла доступна при комнатных 15 градусах.
Теплопроводность материала стенки радиатора — это второй критерий, при котором радиатор, сделанный из биметалла, сильно проигрывает конструкции из алюминия. Приведенное на схеме устройство секции отопления из биметалла ясно показывает, что стенки состоит из алюминия и стали. Даже если толщина стенки будет одинаковой в аналогичных условиях, биметаллический корпус не сможет быть лучше по теплоотдаче, чем алюминиевая система отопления.
Обычно размеры этих двух отопительных систем совпадают и рассчитаны на установку под подоконником. Отметим, что конструкция из алюминия и биметалла занимает больше по площади места, чем стальные или чугунные модели. По этой причине теплоотдача может быть сильнее, чем при стандартом расчете на основании одних лишь свойств металлов – теплоемкости и теплопроводности. Теперь осталось разобраться с давлением и температурой теплоносителя.
Идеальные условия использования биметаллических радиаторов
Во многом устройство и схема алюминиевой биметаллической системы похожи. Внутри секции есть основной канала, по которому и будет двигаться разогретый теплоноситель. Размеры и форма канала будут соответствовать сечению подводящей трубы, а это значит, что жидкость не будет подвержена дополнительным завихрениям и не будет локальных мест перегрева.
Из табличных данных, на которые мы уже опирались выше, становится ясно, что эти два типа радиаторных конструкций проектируют при расчете на высокое давление и высокую температуру теплоносителя. В этом случае все преимущества очевидны. Для начала, разность температур увеличивается, и вместо обычных 70 градусов разницы может быть уже и 100. К примеру, на входе в систему отопления давление и температура теплоносителя равны 18 бар и 110 градусов, а для паровых систем и все 120 градусов. Значит, имеем поправочный коэффициент эффективности теплоотдачи 1,2 , что равно 20%.
А еще, чем больше давление теплоносителя, тем выше будет коэффициент теплоотдачи и теплопередачи от жидкости к металлу. Благодаря повышению значения из-за увеличения давления окончательные данные могут возрасти до 7%. При суммировании всех условий, оказывается, что биметаллические радиаторы отлично подойдут для отопления высоток.
Хотя все производители дают одинаковый срок службы и гарантии для двух типов теплообменников, на самом деле работать на протяжении длительного времени может только биметалл. При наличии различных присадок горячая вода все равно будет действовать разрушительно для алюминия. Другое ли дело легирующая сталь с добавками в виде никеля и марганца, срок службы которой может быть равен и 15 лет.
Заключение
Вы можете получить высокую теплоотдачу на биметаллическом радиаторе не только при подаче высокого давления. Для всех типов радиатора можно увеличить теплоотдачу как минимум на 20%, если в домашних котельных использовать не воду, а антифриз или тосол. Давление останется неизменным, а температура на выходе будет равна 97 градусам, а это прибавка в теплоотдаче 20%. Помимо этого, тосол хорошо сохраняет чугунные, алюминиевые, стальные трубы и теплообменники.
Теплоотдача радиаторов отопления таблица — Климат в доме

Основными критериями выбора приборов для обогрева жилья является его теплоотдача.
Это коэффициент, определяющий количество выделенного тепла устройством.
Иными словами, чем выше теплоотдача, тем быстрее и качественнее будет осуществляться прогрев дома.
Сколько нужно тепла для отопления?
Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов: климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях.
В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов: для помещения с потолками не выше 3 метров, на 10 м2 требуется 1 Квт тепловой энергии. Для северных регионов показатель увеличивается до 1,3 Квт.
К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт
Теплоотдача – ключевой показатель эффективности
Коэффициент теплоотдачи радиаторов – это показатель его мощности. Он определяет количество выделенного тепла за определенный промежуток времени. На мощность конвектора влияют: физические свойства прибора, его тип подключения, температура и скорость теплоносителя.
Мощность конвектора, указанная в его техпаспорте, обусловлена физическими свойствами материала, из которого изготовлен прибор, и зависит от его межосевого расстояния. Чтобы рассчитать необходимое количество секций радиатора для помещения, понадобится площадь жилья и коэффициент теплового потока прибора.
Вычисления производятся по формуле:
Количество секций = S/ 10 * коэффициент энергии (K) / величина теплового потока (Q)
Пример: Необходимо рассчитать количество секций алюминиевой батареи (Q = 0,18) для помещения, площадью 50 м2.
Расчет: 50 / 10 * 1 / 0,18 = 27,7. То есть, для обогрева помещения понадобится 28 секций. Для монолитных приборов, за место Q, ставим коэффициент теплоотдачи радиатора и в результате получаем необходимое количество батарей.
Если конвекторы будут установлены рядом с источниками, влияющими на теплопотери (окна, двери), то коэффициент энергии берется из расчета — 1.3.
Для отопления используются радиаторы: стальные, алюминиевые, медные, чугунные, биметаллические (сталь + алюминий), и все они имеют разную величину теплового потока, обусловленную свойствами металла.
Сравнение показателей: анализ и таблица
Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.
Тип радиатора | Межосевое расстояние (мм) | Теплоотдача (КВт) | Температура теплоносителя (0С) |
Алюминиевые | 350 | 0,139 | 130 |
500 | 0,183 | ||
Стальные | 500 | 0,150 | 120 |
Биметаллические | 350 | 0,136 | 135 |
500 | 0,2 | ||
Чугунные | 300 | 0,14 | 130 |
500 | 0,16 | ||
Медные | 500 | 0,38 | 150 |
Факторы, которые влияют на показатели
Материал изготовления
Наибольшей теплоотдачей обладают медные и алюминиевые конвекторы. Самый низкий коэффициент мощности наблюдается у чугунных батарей, но он компенсируется их способностью сохранять тепло длительное время.
На эффективность КПД влияет правильный монтаж теплоприборов:
- Оптимальное расстояние между полом и батареей – 70-120 мм, между подоконником – не менее 80 мм.
- Обязательно предусматривается установка воздуховыпускника (крана Маевского).
- Горизонтальное положение теплоприбора.
Радиаторы с лучшей теплоотдачей:
Материал | Модель, производитель | Номинальный тепловой поток (КВт) | Стоимость за секцию (руб) |
Алюминий | Royal Thermo Indigo 500 | 0,195 | 700,00 |
Rifar Alum 500 | 0,183 | 700,00 | |
Elsotherm AL N 500х85 | 0,181 | 500,00 | |
Чугун | STI Нова 500 (секционного типа) | 0,120 | 750,00 |
Биметалл | Rifar Base Ventil 500 | 0,204 | 1100,00 |
Royal Thermo PianoForte 500 | 0,185 | 1500,00 | |
Sira RS Bimetal 500 | 0,201 | 1000,00 | |
Сталь | Kermi FTV(FKV) 22 500 | 2,123 (панель) | 8200,00 (панель) |
Размещение радиаторов
Выделяют следующие типы подключения:
- Диагональное. Подающая труба монтируется к конвектору слева сверху, а выводящая снизу справа.
- Боковое (одностороннее). Подающая и обратная труба крепятся к теплоприбору с одной стороны.
- Нижнее. Обе трубы подводятся к батарее снизу, с противоположных сторон.
- Верхнее. Трубы монтируются к верхним выходам теплоприбора, с обеих сторон.
Самым эффективным способом является диагональное подключение, которое позволяет равномерно нагреться прибору. При небольшом количестве секций, можно повысить мощность посредством бокового подключения.
Если секций одного радиатора более 15, то данная схема будет неэффективной, так как дальняя боковая сторона не будет прогреваться в данной мере.
Как улучшить теплоотдачу
Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.
В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.
На стену за теплоприбором целесообразно установить отражающий материал, чтобы направить всю полезную энергию внутрь помещения.
При монтаже теплопровода, следует отдать предпочтение металлическим трубам, так как они также осуществляют теплообмен, соответственно КПД значительно увеличивается.
Подводя итоги, следует отметить, что лучшей теплоотдачей обладают медные, биметаллические и алюминиевые радиаторы. Первые отличаются довольно высокой стоимостью и используются крайне редко.
На основе заявленной мощности радиатора производителем, можно сделать вывод, что биметаллические теплоприборы превосходят алюминиевые.
Однако, на практике больше тепла отдают приборы из алюминия, так как сталь, входящая в состав биметаллических конвекторов обладает высокой теплопроводностью, а значит остывает за более короткий промежуток времени.
Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.
Таблица теплоотдачи чугунных и биметаллических радиаторов отопления
Создание комфортной температуры жилья в отопительный период зависит от множества факторов: от типа стены, высоты помещения, площади оконных проемов, характера расположенного пространства и многого другого. Большое значение имеет тепловой расчет устанавливаемых приборов. Традиционные методы расчета требуют учета вышеуказанных факторов, достаточно трудоемки. Для упрощения выбора типа оборудования применяется таблица радиаторов отопления.
Радиаторы отопления
Характеристики радиаторов отопления
Эффективность батарей зависит от следующих факторов:
- температуры подачи теплоносителя;
- теплопроводности материала;
- площади поверхности батареи;
Чем выше эти показатели, тем больше тепловая мощность приборов.
Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения
В качестве единицы измерения теплоотдачи радиатора принято считать Вт/м*К, наравне с этим в паспорте часто указывается формат кал/час. Коэффициент перевода из одной единицы измерения в другую: 1 Вт/м*К = 859,8 кал/час.
Чугунные радиаторы отопления
В зависимости от материалов изготовления отличают чугунные, стальные, алюминиевые и биметаллические радиаторы. Каждый материал имеет показатели по следующим параметрам:
- теплоотдаче одной секции;
- рабочему давлению;
- давлению опрессовки;
- емкости одной секции;
- массе одной секции.
Совет! Не следует забывать про подверженность материала изготовления батарей к коррозионному воздействию. Это важная характеристика при покупке обогревателя.
Чугунные батареи
Этот вид радиаторов, которые в народе называют «гармошками». Они обладают довольно большой эффективностью, стойкостью к коррозии, удару. Эти батареи достаточно долговечны и имеют доступную рыночную цену. Благодаря большим размерам сечения одной секции, засорение для таких батарей не представляет угрозы.
Чугунные батареи нового поколения
Теплоотдача секции чугунного радиатора ниже, чем у аналогов. Через час после отключения отопления чугунные батареи сохраняют 30% тепла. Современные производители выпускают эстетичные чугунные батареи с гладкой поверхностью и изящными формами, поэтому спрос на них остается высоким. Сравнение чугунных радиаторов отопления с другими видами приборов, приводится в нижеуказанной таблице.
Таблица тепловой мощности радиаторов отопления
Вид радиатора | Теплоотдача секции, Вт | Рабочее давление, Бар | Давление опрессовки, Бар | Емкость секции, л | Масса секции, кг |
Алюминиевый с зазором между осями секций 500мм | 183,0 | 20,0 | 30,0 | 0,27 | 1,45 |
Алюминиевый с зазором между осями секций 350мм | 139,0 | 20,0 | 30,0 | 0,19 | 1,2 |
Биметаллический с зазором между осями секций 500мм | 204,0 | 20,0 | 30,0 | 0,2 | 1,92 |
Биметаллический с зазором между осями секций 350мм | 136,0 | 20,0 | 30,0 | 0,18 | 1,36 |
Чугунный с зазором между осями секций 500мм | 160,0 | 9,0 | 15,0 | 1,45 | 7,12 |
Чугунный с зазором между осями секций 300мм | 140,0 | 9,0 | 15,0 | 1,1 | 5,4 |
Алюминиевые батареи
Теплоотдача алюминиевых радиаторов отопления, как видно из таблицы, лучше, чем у чугунных батарей, но хуже чем у биметаллических. Они достаточно прочны, а легкий собственный вес позволяет облегчить монтаж приборов. Из-за уязвимости к кислородной коррозии в последнее время стали проводить анодирование алюминия.
Алюминиевые радиаторы.
Биметаллические батареи
Этот вид радиатора является сочетанием элементов из стали и алюминия. Каналом для движения теплоносителя являются трубы, а соединительными деталями – резьбовые соединения. В качестве защиты и придания эстетичного внешнего вида такие батареи покрываются кожухом из алюминия. Недостатком изделия является относительно высокая стоимость по сравнению с аналогами. Но это компенсируется тем, что теплоотдача у биметаллических радиаторов отопления самая высокая.
Биметаллические радиаторы отопления
Стальные батареи
Старые стальные радиаторы обладают достаточно высокой тепловой мощностью, но при этом плохо удерживают тепло. Их нельзя разобрать или наращивать количество секций. Радиаторы данного типа подвержены к коррозии.
Стальные радиаторы
В настоящее время начали выпускать панельные радиаторы из стали, которые привлекательны высокой отдачей тепла при небольших размерах по сравнению с секционными радиаторами. Панели имеют каналы, по которым происходит циркуляция теплоносителя. Батарея может состоять из нескольких панелей, кроме этого, оснащаться гофрированными пластинами, увеличивающими теплоотдачу.
Устройство стальных панельных радиаторов
Тепловая мощность панелей из стали напрямую связана с габаритами батареи, зависящими от количества панелей и пластин (оребрение). Классификация проводится в зависимости от оребрения радиатора. Например, тип 33 присвоен трехпанельным обогревателям с тремя пластинами. Диапазон типов батарей составляет от 33 до 10.
Самостоятельный расчет требуемых радиаторов отопления связан с большим объемом рутинной работы, поэтому производители начали сопровождать изделия таблицами характеристик, которые сформированы по записям результатов испытаний. Эти данные зависят от типа изделия, монтажной высоты, температуры теплоносителя при входе и выходе, нормативной температуры в помещении и многих других характеристик.
Стальной панельный радиатор
Расчет приборов по теплопотерям помещения
Тепловые показатели устанавливаемых приборов определяются из расчета потери тепла помещением. Нормативное значение тепла, необходимого на единицу объема обогреваемой комнаты, за которую принимается 1 м3, составляет:
- для кирпичных зданий – 34 Вт;
- для крупнопанельных зданий – 41 Вт.
Теплопотери
Температура теплоносителя у входа и выхода и стандартная температура помещения отличаются для различных систем. Поэтому для определения реального теплового потока рассчитывается дельта температуры по формуле:
Dt = (T1 + T2)/2 – T3, где
- T1 – температура воды у входа системы;
- T2 – температура воды у выхода системы;
- T3 – стандартная температура помещения;
Таблица для расчета теплоносителя
Важно! Паспортная теплоотдача умножается на поправочный коэффициент, определяемый в зависимости от Dt.
Для определения количества тепла, которое необходимо для помещения, достаточно умножить его объем на нормативное значение мощности и коэффициент учета средней температуры зимой, в зависимости от климатической зоны. Этот коэффициент равен:
- при -10оС и выше — 0,7;
- при -15оС — 0,9;
- при -20оС — 1,1;
- при -25оС — 1,3;
- при -30оС — 1,5.
Кроме этого, необходима коррекция на количество наружных стен. Если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3. Используя данные изготовителя радиатора, всегда легко выбрать нужный обогреватель.
Теплопотери помещения
Помните, что самое важное качество хорошего радиатора — это его долговечность в работе. Поэтому постарайтесь сделать свою покупку так, чтобы батареи прослужили вам необходимое количество времени.
видео-инструкция как рассчитать своими руками, особенности расчета одной секции батарей отопления, таблица, цена, фото
Оба радиатора, как алюминиевый, так и биметаллический имеют внешнее сходство. Распознать отличие можно лишь, подержав их в руках, второй весит на порядок больше, что объясняется его устройством – внутри отопительного прибора расположены стальные трубки, благодаря которым радиатор разрешено использовать в сети центрального отопления. Об этом, а также о теплоотдаче устройства и поговорим ниже.

Биметаллические радиаторы обладают высокой теплоотдачей каждой секции
Устройство
Почему потребовались такие конструктивные дополнения в алюминиевый радиатор? Ведь теплоотдача этого металла гораздо больше стали, соответственно, в квартире с алюминиевыми отопительными приборами будет заметно теплее.

Наглядно видно, что теплопередача алюминия больше железа в 2 раза
Но дело в том, что алюминий имеет «уязвимые места», и прежде всего, связано с качеством теплоносителя, использующегося для городских теплосетей. Используемый теплоноситель несет с собой всевозможные примеси, в том числе щелочи и кислоты, которые разрушают алюминий.
Второй важный момент – неспособность противостоять гидравлическому давлению, что не редкость для домов, подключенных к системе центрального отопления.
Свойства
В пользу биметаллических отопительных приборов говорят следующие факты:
Химическая стойкость | В биметаллических конструкциях теплоноситель циркулирует по стальным трубкам, не контактируя с алюминием. |
Прочность | Биметаллический радиатор способен выдержать давление от 30 до 40 бар, что полностью исключает возможность разрушения от гидроудара. |
Долговечность | Производители данных отопительных приборов гарантируют их длительную работу. В среднем срок службы устанавливается на уровне 20 лет. |

Радиатор состоит из стальной втулки и алюминиевого корпуса
Таким образом, в биметаллических радиаторах сохранены все положительные качества алюминиевых приборов.
Они обладают:
- высокой теплоотдачей;
- привлекательным внешним видом;
- хорошей компактностью.
С учетом их конструктивных особенностей, можно с уверенностью утверждать, что они станут идеальным выбором при монтаже своими руками отопительной системы в городских квартирах.

Сравнительная таблица теплоотдачи биметаллических радиаторов отопления демонстрирует разницу между моделями разных производителей
Теплоотдача и способ подключения
Правильно подобранное количество секций радиатора для определенной комнаты – это только половина работы. Оставшаяся часть – найти оптимальный способ подключения отопительного прибора, чтобы он в полной мере смог показать свои качества. Итак, придется выбирать из таких вариантов:
Одностороннее прямое | Самый оптимальный вариант подсоединения не только биметаллического радиатора, но и любого другого. Именно этот показатель теплоотдачи вы можете видеть в паспорте устройства. В данном случае теплоноситель попадает в радиатор сверху, полностью проходит по всем его секциям и уходит с этой же стороны снизу. |
Диагональное | Неплохой вариант и полностью себя оправдывает только для батарей с большим количеством секций, а именно – > 12 штук. Нагретая вода поступает в устройство с одной стороны сверху, проходит по каналам и выходит через нижний радиаторный выход с другой стороны. В данном случае вы сможете максимально снизить возможные теплопотери и добиться необходимого результата. |
Нижнее | Используется в том случае, когда по проекту трубопровод отопительной системы скрыт в полу. Инструкция подключения следующая: вход – с одной стороны в нижнее отверстие устройства, выход – из нижнего отверстия с другой стороны. Как показывает опыт, в этом случае придется добавить секцию, так как потери тепла составят в пределах 10%. |
Однотрубное | Данное подключение представляет собой последовательное соединение радиаторов отопления. Теплопотери могут при этом достичь 40%, поэтому использовать в системах автономного отопления не рекомендуем, иначе цена тепла будет неподъемной. |

Теплоотдача одной секции биметаллического радиатора при двухтрубном прямом одностороннем подключении самая максимальная
Можно сделать вывод, что:
- если вы хотите добиться максимальной теплоотдачи от отопительных приборов со стандартным количеством секций 7-10, необходимо ориентироваться на прямое одностороннее их подключение к центральному отоплению;
- в том случае, когда площадь помещения достаточно большая и требуется производить монтаж радиаторов с количеством секций превышающим 12, подойдет диагональное включение прибора в двухтрубной системе (подача + обратка).

На фото – диагональный способ подключения радиатора из 12 секций
Правильное место монтажа
Еще один немаловажный вопрос, о котором нередко мы забываем, считая, что о не такой существенный. Классический вариант – под окном, но почему?
Это связано с доступом холодного воздуха в помещение:
- через окно его поступает гораздо больше, чем через наружные стены;
- он сразу опускается вниз и начинает стелиться по полу, вызывая дискомфорт и желание подняться выше.
Поэтому нужно поставить тепловой барьер, который позволит разбавить или даже полностью свести на нет холодный поток.
Совет: используйте радиатор шириной, составляющей 70-90% от оконного проема, тогда воздух, поступающий с улицы сразу же начнет прогреваться.
Есть также определенные правила установки, которые необходимо соблюдать, чтобы создать хорошую конвекцию и улучшить тем самым теплоотдачу:
- оставляйте между отопительным прибором и полом просвет, равный 60 мм и более;
- от подоконника расстояние до верхней части радиатора должно быть почти столько же – 50-60 мм и более;
- от стены следует отступить на 25 мм и более.

Теплоотдача 1 секции биметаллических радиаторов зависит напрямую от правильного размещения отопительного прибора
Рекомендуем также:
- в угловой комнате с дополнительной наружной стеной для снижения тепловых потерь установите на холодной стене еще один прибор. Его основной задачей будет компенсация мощности, причем высота монтажа при этом роли не играет, примите за образец уровень батарей, установленных под оконными проемами;
- прежде чем монтировать радиаторы, произведите расчет количества секций, чтобы тепловой мощности было достаточно, учитывая потери через стены и окна.
Совет: для увеличения теплоотдачи установите за прибором фольгированный экран из пенофола, металлической стороной вовнутрь помещения.
Вывод
Нормальная теплоотдача отопительных приборов позволяет не только получать необходимое тепло в комнату, но и даже реально экономить. Биметаллические радиаторы – мощные приборы, способные при правильном подключении и установке быстро и качественно нагревать жилые и коммерческие помещения. Видео в этой статье даст возможность найти дополнительную информацию по вышеуказанной теме.
Теплоотдача биметаллических радиаторов отопления таблица
Теплоотдача биметаллических радиаторов: устройство приборов, способы и место подключения
Оба радиатора, как алюминиевый, так и биметаллический имеют внешнее сходство. Распознать отличие можно лишь, подержав их в руках, второй весит на порядок больше, что объясняется его устройством — внутри отопительного прибора расположены стальные трубки, благодаря которым радиатор разрешено использовать в сети центрального отопления. Об этом, а также о теплоотдаче устройства и поговорим ниже.
Биметаллические радиаторы обладают высокой теплоотдачей каждой секции
Устройство
Почему потребовались такие конструктивные дополнения в алюминиевый радиатор? Ведь теплоотдача этого металла гораздо больше стали, соответственно, в квартире с алюминиевыми отопительными приборами будет заметно теплее.
Наглядно видно, что теплопередача алюминия больше железа в 2 раза
Но дело в том, что алюминий имеет «уязвимые места», и прежде всего, связано с качеством теплоносителя, использующегося для городских теплосетей. Используемый теплоноситель несет с собой всевозможные примеси, в том числе щелочи и кислоты, которые разрушают алюминий.
Второй важный момент – неспособность противостоять гидравлическому давлению, что не редкость для домов, подключенных к системе центрального отопления.
В пользу биметаллических отопительных приборов говорят следующие факты:
В биметаллических конструкциях теплоноситель циркулирует по стальным трубкам, не контактируя с алюминием.
Биметаллический радиатор способен выдержать давление от 30 до 40 бар, что полностью исключает возможность разрушения от гидроудара.
Производители данных отопительных приборов гарантируют их длительную работу. В среднем срок службы устанавливается на уровне 20 лет.
Радиатор состоит из стальной втулки и алюминиевого корпуса
Таким образом, в биметаллических радиаторах сохранены все положительные качества алюминиевых приборов.
- высокой теплоотдачей;
- привлекательным внешним видом;
- хорошей компактностью.
С учетом их конструктивных особенностей, можно с уверенностью утверждать, что они станут идеальным выбором при монтаже своими руками отопительной системы в городских квартирах .
Сравнительная таблица теплоотдачи биметаллических радиаторов отопления демонстрирует разницу между моделями разных производителей
Теплоотдача и способ подключения
Правильно подобранное количество секций радиатора для определенной комнаты – это только половина работы. Оставшаяся часть – найти оптимальный способ подключения отопительного прибора, чтобы он в полной мере смог показать свои качества. Итак, придется выбирать из таких вариантов:
Самый оптимальный вариант подсоединения не только биметаллического радиатора, но и любого другого. Именно этот показатель теплоотдачи вы можете видеть в паспорте устройства.
В данном случае теплоноситель попадает в радиатор сверху, полностью проходит по всем его секциям и уходит с этой же стороны снизу.
Неплохой вариант и полностью себя оправдывает только для батарей с большим количеством секций, а именно — > 12 штук. Нагретая вода поступает в устройство с одной стороны сверху, проходит по каналам и выходит через нижний радиаторный выход с другой стороны.
В данном случае вы сможете максимально снизить возможные теплопотери и добиться необходимого результата.
Используется в том случае, когда по проекту трубопровод отопительной системы скрыт в полу. Инструкция подключения следующая: вход – с одной стороны в нижнее отверстие устройства, выход – из нижнего отверстия с другой стороны.
Как показывает опыт, в этом случае придется добавить секцию, так как потери тепла составят в пределах 10%.
Данное подключение представляет собой последовательное соединение радиаторов отопления. Теплопотери могут при этом достичь 40%, поэтому использовать в системах автономного отопления не рекомендуем, иначе цена тепла будет неподъемной.
Теплоотдача одной секции биметаллического радиатора при двухтрубном прямом одностороннем подключении самая максимальная
Можно сделать вывод, что:
- если вы хотите добиться максимальной теплоотдачи от отопительных приборов со стандартным количеством секций 7-10. необходимо ориентироваться на прямое одностороннее их подключение к центральному отоплению;
- в том случае, когда площадь помещения достаточно большая и требуется производить монтаж радиаторов с количеством секций превышающим 12. подойдет диагональное включение прибора в двухтрубной системе (подача + обратка).
На фото – диагональный способ подключения радиатора из 12 секций
Правильное место монтажа
Еще один немаловажный вопрос, о котором нередко мы забываем, считая, что о не такой существенный. Классический вариант – под окном, но почему?
Это связано с доступом холодного воздуха в помещение:
- через окно его поступает гораздо больше, чем через наружные стены;
- он сразу опускается вниз и начинает стелиться по полу, вызывая дискомфорт и желание подняться выше.
Поэтому нужно поставить тепловой барьер, который позволит разбавить или даже полностью свести на нет холодный поток.
Совет: используйте радиатор шириной, составляющей 70-90% от оконного проема, тогда воздух, поступающий с улицы сразу же начнет прогреваться.
Есть также определенные правила установки, которые необходимо соблюдать, чтобы создать хорошую конвекцию и улучшить тем самым теплоотдачу:
- оставляйте между отопительным прибором и полом просвет, равный 60 мм и более;
- от подоконника расстояние до верхней части радиатора должно быть почти столько же – 50-60 мм и более;
- от стены следует отступить на 25 мм и более.
Теплоотдача 1 секции биметаллических радиаторов зависит напрямую от правильного размещения отопительного прибора
- в угловой комнате с дополнительной наружной стеной для снижения тепловых потерь установите на холодной стене еще один прибор. Его основной задачей будет компенсация мощности, причем высота монтажа при этом роли не играет, примите за образец уровень батарей, установленных под оконными проемами;
- прежде чем монтировать радиаторы, произведите расчет количества секций, чтобы тепловой мощности было достаточно, учитывая потери через стены и окна.
Совет: для увеличения теплоотдачи установите за прибором фольгированный экран из пенофола, металлической стороной вовнутрь помещения.
Нормальная теплоотдача отопительных приборов позволяет не только получать необходимое тепло в комнату, но и даже реально экономить. Биметаллические радиаторы – мощные приборы, способные при правильном подключении и установке быстро и качественно нагревать жилые и коммерческие помещения. Видео в этой статье даст возможность найти дополнительную информацию по вышеуказанной теме.
Таблицы теплоотдачи радиаторов отопления разных материалов
Главная задача радиаторов отопления — эффективный и качественный обогрев комнаты, в которой он установлен.
Это зависит от такой характеристики как теплоотдача. Этот показатель измеряется в Вт и указывает на то, сколько тепловой энергии выделяется радиатором в течение определенного периода времени.
Он является уникальным для каждого радиатора и зависит от его размера, материала, из которого он изготовлен и от теплоносителя.
На теплоотдачу может влиять также способ его подключения и особенности размещения. Это можно понять на простом примере — радиатор, встроенный в нишу, будет отапливать помещение медленнее, чем установленный обычным образом.
Расчет теплоотдачи радиатора
Теплоотдача радиатора рассчитывается по формуле:
где: k — коэффициент теплопередачи радиатора, Вт/м*К;
А — площадь поверхности радиатора, м²;
ΔT — температурный напор — разность между температурой радиатора и отапливаемого помещения, °С.
В данном случае, значение разницы температур будет одинаковым при вычислении ее в градусах и Кельвина и Цельсия .
Таблица. 1 Коэффициент теплоотдачи радиаторов по материалу
Тип радиатора по материалу
Коэффициент теплоотдачи (Вт/м*К)
Итак, биметаллические обогреватели по сравнению с другими являются самыми эффективными. Все дело в их конструктивных особенностях. они представляют собой алюминиевый корпус с прочным каркасом из стальных трубок внутри него. Такой радиатор подойдет как для квартиры в многоэтажном доме, так и в коттедже.
Алюминиевые радиаторы уступают биметаллическим в плане эффективности теплопередачи, но они имеют меньший вес и стоят дешевле. Помимо этого алюминиевый сплав может быть подвержен негативному воздействию некачественного теплоносителя.
Чугунные радиаторы существенно отличаются от всех остальных. Обладая значительным весом, они являются наименее эффективными. Их главные преимущества — долговечность и высокая тепловая инерция. Они дольше держат тепло и продолжают обогревать помещение даже спустя какое-то время после отключения котла.
No related posts.
Добавить комментарий Отменить ответ
© Copyright 2017. Все права защищены.
Сравнение радиаторов отопления по теплоотдаче
Реальная теплоотдача радиаторов отопления различных видов продолжает служить предметом споров, что не утихают на различных интернет-площадках и форумах. Споры ведутся в контексте, какие из них лучшие по этому показателю, что в итоге оказывает влияние на выбор тех или иных приборов отопления пользователями. Поэтому есть смысл провести сравнение тепловой мощности радиаторов разных типов, оценив их реальную теплоотдачу. О чем и говорится в материале, представленном вашему вниманию.
Как правильно рассчитать реальную теплоотдачу батарей
Начинать надо всегда с технического паспорта, что прилагается к изделию производителем. В нем вы точно обнаружите интересующие данные, а именно — тепловую мощность одной секции либо панельного радиатора определенного типоразмера. Но не спешите восхищаться отличными показателями алюминиевых или биметаллических батарей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.
Зачастую можно услышать такие суждения: мощность алюминиевых радиаторов самая высокая, ведь общеизвестно, что теплоотдача меди и алюминия – самая лучшая среди других металлов. У меди и алюминия наилучшая теплопроводность, это верно, но передача тепла зависит от многих факторов, о коих будет сказано далее.
Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (t подачи + t обратки)/2 и в помещении равна 70 °С. С помощью формулы это выражается так:
Для справки. В документации на изделия от разных фирм данный параметр может обозначаться по-разному: dt, Δt или DT, а иногда просто пишется «при разнице температур 70 °С».
Что означает, когда в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, только надо в нее подставить известное значение комнатной температуры – 22 °С и провести расчет в обратном порядке:
Зная, что разность температур в подающем и обратном трубопроводах не должна быть больше 20 °С, надо определить их значения таким образом:
Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что в подающем трубопроводе будет вода, нагретая до 102 °С, а в комнате установится комфортная температура 22 °С. Первое условие выполнить нереально, поскольку в современных котлах нагрев ограничен пределом 80 °С, а значит, батарея никогда не сможет отдать заявленных 200 Вт тепла. Да и редкий случай, чтобы теплоноситель в частном доме разогревали до такой степени, обычный максимум – это 70 °С, что соответствует DT = 38—40 °С.
Порядок расчета
Получается, что реальная мощность батареи отопления гораздо ниже заявленной в паспорте, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к начальной величине тепловой мощности нагревателя. Ниже представлена таблица, где прописаны значения коэффициентов, на которые надо умножить паспортную теплоотдачу радиатора в зависимости от величины DT:
Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:
- Определить, какая должна быть температура в доме и воды в системе.
- Подставить эти значения в формулу и рассчитать свою реальную Δt.
- Найти в таблице соответствующий ей коэффициент.
- Умножить на него паспортную величину теплоотдачи радиатора.
- Подсчитать число отопительных приборов, нужное для обогрева комнаты.
Для приведенного выше примера тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. Стало быть, для обогрева помещения площадью 10 м2 понадобится 1 тыс. Вт теплоты или 1000/96 = 10.4 = 11 секций (округление идет всегда в большую сторону).
Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что для разных приборов от некоторых фирм – производителей дается мощность радиатора при Δt = 50 °С. Тогда пользоваться этим способом нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.
Для справки. Многие производители указывают значения теплоотдачи при таких условиях: t подачи = 90 °С, t обратки = 70 °С, t воздуха = 20 °С, что соответствует Δt = 50 °С.
Сравнение по тепловой мощности
Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти характеристики мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, а тут конструкция и форма изделия играет большую роль. Поэтому идеально сравнить стальной панельный обогреватель с чугунным затруднительно, их поверхности слишком разные.
Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдаст 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) такой же высоты и таким же числом секций сможет выдать только 530 Вт при тех же условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.
Примечание. Характеристики алюминиевых и биметаллических продуктов с точки зрения тепловой мощности практически идентичны, сравнивать их нет смысла.
Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Упомянутые 5 алюминиевых секций GLOBAL высотой 600 мм имеют общую длину около 400 мм, что соответствует стальной панели KERMI 600х400. Выходит, что даже трехрядный стальной прибор (тип 30) выдаст лишь 572 Вт при Δt = 50 °С. Но надо учитывать, что глубина радиатора GLOBAL VOX составляет всего 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминия дает о себе знать, что отражается на габаритах.
В условиях индивидуальной системы отопления частного дома батареи одинаковой мощности, но из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:
- Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они возвращают более холодную воду в систему.
- Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
- Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего появляется небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.
Из всего вышесказанного напрашивается простой вывод. Не суть важно, из какого материала изготовлен радиатор, главное, чтобы он был верно подобран по мощности и подходил пользователю во всех отношениях. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой можно устанавливать.
Сравнение по другим характеристикам
Об одной особенности работы батарей – инертности – уже было упомянуто выше. Но для того чтобы сравнение радиаторов отопления было корректным, его надо производить не только по теплоотдаче, но и по другим важным параметрам:
- рабочему и максимальному давлению;
- количеству вмещаемой воды;
- массе.
Ограничение по величине рабочего давления определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота столба воды может достичь сотни метров. Кстати сказать, это ограничение не касается частных домов, где давление в сети не бывает высоким по определению. Сравнение по вместительности радиаторов может дать представление об общем количестве воды в системе, которое придется нагревать. Ну а масса изделия важна при определении места и способа его крепления.
В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:
Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.
Заключение
Если провести сравнение более широкого круга производителей, то все равно выяснится, что по теплоотдаче и другим характеристикам первое место прочно удерживают алюминиевые радиаторы. Биметаллические обойдутся дороже, что не всегда оправдано, так как они лучше только по рабочему давлению. Стальные батареи – это скорее бюджетный вариант, а вот чугунные, наоборот, — для ценителей. Если не принимать во внимание советские чугунные «гармошки» МС140, то ретро радиаторы – самые дорогие из всех существующих.
Рекомендуем:
Какие краны лучше выбрать для радиаторов отопления Какие радиаторы отопления лучше выбрать — алюминиевые или биметаллические Кварцевый обогреватель для дома – решение вопроса или очередная проблема
Радиаторы и обогреватели > Сравнение радиаторов отопления по теплоотдаче
Источники: http://gidroguru.com/otoplenie/otopit-pribory/radiatory/2864-teplootdacha-bimetallicheskih-radiatorov, http://holodine.net/dopolnitelnoe-uteplenie/radiator/type/tablicy-teplootdachi-radiatorov-otopleniya/, http://otivent.com/sravnenie-radiatorov-otopleniya-po-teplootdache
Принадлежности для рассеивания тепла для большой аккумуляторной батареи
Описание продукта
Мы торжественно заявляем, что все продукты на этом сайте используются только для демонстрации объема нашего бизнеса и производственных мощностей, мы никогда не будем продавать какие-либо товары без разрешения клиента.
Принадлежности для отвода тепла для большой аккумуляторной батареи
900 покрытие ПримечаниеНаименование детали | Принадлежности для отвода тепла для большой аккумуляторной батареи | |
Материал | алюминий | |
Никель | ||
Размеры | Согласно чертежам | |
Срок действия цены | EXW, FOB Шэньчжэнь / Гуаньчжоу, CIF | |
MOQ | 3000 шт., можно обсудить | |
Данная деталь показывает объем наших производственных возможностей и не продается. |
Наша стальная конструкция использовалась в следующих отраслях:
♦ Освещение
♦ Внешняя антенна 3G
♦ Электронное оборудование
♦ Бытовая техника
♦ Центральный кондиционер
♦ Транспортное оборудование
♦ Другое погрузочно-разгрузочное оборудование
Наши услуги
1. На все ваши вопросы о нас или наших продуктах мы ответим вам подробно в течение 24 часов.
2. Мы предлагаем услуги OEM. Можно напечатать собственный логотип на продукте, можно настроить упаковку розничной коробки и другие вещи.
3. У нас очень опытные инженеры по исследованиям и разработкам, и у нас есть сильные возможности для реализации проектов ODM.
Информация о компании
Dongguan Kinggold Industry Co., Ltd была расположена в известном производственном городе Дунгуань, провинция Гуандун, рядом с Гонконгом, Шэньчжэнем и Гуанчжоу, с очень удобным транспортным сообщением. Это профессиональное предприятие по производству прецизионной штамповки металла, основной продукции, включая экраны / контакты / зажимы и зажимы / нестандартные клеммы и прогрессивную штамповку и т. Д.Мы можем предоставить ряд услуг от исследования и разработки продукта, изготовления пресс-форм, производства, сборки, тестирования, упаковки до транспортировки. У нас есть штамповочные машины на 25 шт. От 45 до 250 тонн и две экструдеры.
FAQ
Kinggold может предоставить все аналогичные детали, такие как фиксатор из нержавеющей стали, а также будет предложена пунктуальная доставка и отличное послепродажное обслуживание, свяжитесь с нами напрямую, если есть интерес.
Для быстрых результатов, при запросе предложения:
- Отправьте нам по электронной почте как можно больше информации, нам будет полезно указать точную цену
- Пожалуйста, укажите необходимое количество, требования к материалам, эскизы, чертежи , любые особые потребности или детали, детали упаковки и требования к доставке, требования к срокам поставки, срокам предложения и т. д.
- Мы подтвердим получение вашего запроса предложения как можно скорее, по факсу или электронной почте
- Продукты здесь, чтобы показать объем наших производственных возможностей и не продается
Исследование характеристик рассеивания тепла пространственной компоновки литиевых батарей в АНПА
Для удовлетворения требований энергопотребления автономных подводных аппаратов (АНПА) источник питания обычно состоит из большого количества высокоэнергетических групп литиевых батарей. Свойства рассеивания тепла литиевой батареей не только влияют на характеристики подводного аппарата, но и создают определенные риски для безопасности. Основываясь на широком применении литиевых батарей, литиевые батареи в АПА взяты в качестве примера для исследования характеристик рассеивания тепла пространственной компоновкой литиевых батарей в АПА.С целью повышения безопасности литиевых батарей разработана модель процесса теплопередачи, основанная на уравнении сохранения энергии, и проанализированы характеристики рассеивания тепла батареями пространственной компоновки. Результаты показывают, что наиболее подходящее расстояние между ячейками и перекрестное расположение лучше, чем расположение последовательности с точки зрения характеристик охлаждения. Температурный градиент и изменение температуры внутри кабины со временем в первую очередь зависят от скорости навигации, но они мало связаны с температурой окружающей среды.
1. Введение
Поскольку автономные подводные аппараты (АНПА) развиваются в направлении больших расстояний и высоких скоростей, для поддержки навигации срочно требуется все больше мощности. Поскольку электрохимические реакции, происходящие в литий-ионных батареях, будут генерировать тепло, батарейный отсек автономных подводных аппаратов долгое время работает на крупномасштабных интегрированных литий-ионных аккумуляторных батареях в ограниченном пространстве, и, таким образом, будут существовать проблемы с безопасностью и надежностью.В [1] тепло можно разделить на две части. С одной стороны, в аккумуляторном отсеке происходит накопление тепла, поскольку тепло от аккумуляторного блока не может рассеиваться своевременно. С другой стороны, неравномерно излучающий тепло аккумуляторный блок вызовет локальную разницу температур, что приведет к неравномерной работе батарей и, в конечном итоге, повлияет на общую производительность батарей.
В настоящее время отечественные и зарубежные ученые сосредоточили свое внимание на проблеме безопасности АПА, использующих литиевые батареи для проведения соответствующих исследований.В [2–7] проведено исследование стратегии управления тепловым балансом литиевой батареи и системы терморегулирования, рассчитанной на непостоянное влияние срока службы батареи. В [8–10] метод сопряженной теплопередачи «жидкость-твердое тело» был использован для создания математической физической модели процесса теплопроводности внутри аккумуляторной кабины АНПА в связи с проблемой охлаждения аккумуляторной батареи. Кроме того, ток разряда аккумуляторной батареи и теплопроводность аккумуляторной батареи навигационных устройств также были проанализированы в [11], в которой программное обеспечение для анализа методом конечных элементов ANSYS использовалось для анализа температурного поля группы литиевых аккумуляторов АПА и обсуждения влияния различного времени разрядки. и граничные условия на поле температуры батареи.В [12], стационарный анализ теплового моделирования кабины аккумуляторной батареи АНПА был выполнен в соответствии с процессом теплопередачи ключевой точки проекта пассивного теплового контроля конструкции. Что касается тепловых аспектов аккумуляторных батарей в исследовательских работах, основное внимание уделяется области электроэнергии для транспортных средств на новой энергии. В [13] модель крупномасштабного аккумуляторного блока была создана для исследования рассеивания тепла аккумуляторным блоком; в первую очередь он был сосредоточен на области производства электроэнергии для транспортных средств на новой энергии.В [14, 15] была создана модель для прогнозирования производительности литиевых батарей для электромобилей, и влияние различных групп на производительность батареи было проанализировано в том же режиме охлаждения с 9 одноэлементными батареями в качестве батареи. упаковка. Кроме того, с использованием принудительного воздушного охлаждения и материалов с фазовым переходом, охлаждающая способность автомобильного аккумуляторного блока была проанализирована на основе метода вычислительной гидродинамики в [16, 17]. Подходящая модель аккумулятора необходима для правильного проектирования и работы аккумуляторных систем с BMS.Доступны несколько подходов к моделированию: эмпирические модели, статистические модели и электрические модели [18, 19]. В [20] локальное тепловыделение в однослойном литий-ионном аккумуляторном элементе было исследовано как функция -скорости и состояния заряда (SOC). В [21] комбинированная модель использовалась для изучения тепловыделения и рассеивания тепла, а также их влияния на температуру аккумуляторной батареи с вентилятором и без него при разряде постоянного тока и разряде переменного тока на основе вождения электромобиля (EV). циклы.
Существующие исследования в основном сосредоточены на проектировании системы контроля теплового баланса аккумуляторной батареи. Что касается исследований схемы охлаждения аккумуляторной батареи АПА, анализ проводился только для навигации в температурном поле аккумуляторного отсека, но с исследованиями структурной схемы тепловых характеристик аккумуляторной батареи мало что связано. Кроме того, по сравнению с электромобилями аккумуляторная кабина АПА представляет собой замкнутое компактное пространство, и использование обычных методов охлаждения, таких как охлаждение холодным ветром и растворителем, ограничено.Теплопроводность аккумуляторной батареи может быть достигнута только через корпус аккумуляторной батареи и морскую воду, и физические проблемы связаны с тем, как реализовать охлаждение аккумуляторной батареи с помощью воздушного потока, вызываемого локальными колебаниями температуры внутри аккумуляторной кабины и теплопроводной конструкции.
Основной вклад этой статьи двоякий: (i) мы анализируем процесс теплообмена аккумуляторной батареи транспортного средства и устанавливаем модель естественной конвекции и теплопередачи для ограниченного пространства аккумуляторного отсека и (ii) мы исследуем тепло передаточные характеристики литиевых батарей в различных пространственных распределениях.
2. Моделирование пространства литиевой батареи АПА с внешним охлаждением
В соответствии с внутренней структурой кабины аккумуляторной батареи АПА и теоретическими знаниями в области теплопередачи, тепло, передаваемое от батареи к внешней морской воде, можно резюмировать следующим образом: аспекты теплопроводности. Первая часть теплопроводности включает тепло, выделяемое аккумуляторной батареей, и процесс теплообмена между аккумуляторной кабиной и стенкой корпуса. Вторая часть процесса теплопроводности происходит между стенкой корпуса кабины и внешней стенкой корпуса.Наконец, третья часть теплопроводности — это теплообмен батареи между внешней стенкой корпуса кабины и морской водой. Процедура показана на рисунке 1.
Чтобы облегчить анализ распределения температуры в аккумуляторной кабине при различных рабочих условиях, процесс теплопередачи в аккумуляторной кабине был предположен и упрощен следующим образом:
.Обзор методов пассивного отвода тепла на печатных платах | Блог
Вам когда-нибудь было так жарко, что вы думали, что можете растаять, как эскимо? Лето здесь, в SoCal, становится довольно жарким, и мне хочется, чтобы у меня было несколько заморозков. Когда я прихожу с работы домой, я люблю включать кондиционер и делать вид, что живу в иглу. Однако единственное, что хуже кипения на жаре, — это то, что все мои деньги испаряются на счетах за охлаждение.Другие люди используют другой подход к охлаждению; они используют геометрические формы или теплообменники для пассивного охлаждения своих домов. Я могу смеяться, когда вижу уродливый дом с геодезическим куполом, но владельцы — это те, кто сохраняет хладнокровие и свои деньги. Охлаждение вашей печатной платы может быть таким же раздражающим, как и охлаждение вашего дома. системы снижения температуры поглощают электроэнергию и занимают слишком много места. К счастью для нас, печатные платы также могут выиграть от пассивного охлаждения. Некоторые из основных методов охлаждения без мощности включают естественную конвекцию, теплораспределители и теплообменники.Существует даже новаторская технология охлаждения капель, которая может появиться в ближайшие несколько лет.
Преимущества Passive Over
Обычно я предпочитаю охлаждающую технику, например кондиционирование воздуха, пассивной технике, например обильному потоотделению. Проблема с охлаждением печатных плат заключается в том, что они обычно занимают слишком много энергии и слишком много места.
Использование энергии всегда кажется вам невыносимым. Я никогда не осознаю, что потратил несколько сотен долларов на охлаждение своего дома, пока не получу счет.То же самое происходит в схемах. Первичные микросхемы уже потребляют тонны ватт, так что кого это волнует, если вы установите вентилятор с низкой мощностью. Что ж, если ваше приложение низкое энергопотребление, дополнительное потребление может означать гораздо меньшее время автономной работы.
Некоторые дизайнеры имеют право использовать столько места, сколько им нужно. К сожалению, я не из их числа. В большинстве моих проектов космос — бесценный товар. Это означает, что мне нужно минимизировать занимающие пространство компоненты охлаждения, такие как вентиляторы, чтобы освободить место для контуров.
Пассивные системы охлажденияиспользуют природные явления для охлаждения плат, что означает, что для работы им больше не требуется энергия. Кроме того, они обычно меньше систем, хотя это может варьироваться в зависимости от того, какой дизайн вы выберете.
Радиаторы выглядят круто и хорошо помогают поддерживать охлаждение печатной платы.
Пассивные системы охлаждения
Конечно, есть несколько других методов охлаждения, кроме тех, которые я здесь упомяну. Однако это одни из самых пугающих схем.
Естественная конвекция / радиаторы — Естественная конвекция — это то, на что это похоже. Хотя для этого необязательно использовать радиаторы, они для этого хорошо подходят. При правильном расположении радиаторы могут использовать естественный воздушный поток для рассеивания тепла без использования электроэнергии. Если вы хотите разработать оптимальный радиатор, вам нужно будет вычислить несколько цифр, чтобы получить эффективный воздушный поток и минимизировать пограничный слой. Это решение чрезвычайно простое, но занимает больше места, чем другие пассивные подходы.
Conduction and Radiation / Heat Spreaders — Если конвекция включает теплопередачу в жидкостях, излучение и теплопроводность имеют дело с твердыми телами. Обычно теплораспределители не являются основой вашего управления тепловым сопротивлением, а лишь усиливают его. По сути, любой кусок металла действует как рассеиватель тепла, поскольку он проводит тепловую энергию. Чтобы наилучшим образом использовать теплопроводность и излучение, вы должны попытаться направить как можно больше тепла на внешние слои вашей платы, где его можно будет излучать более эффективно.Вы можете использовать тепловые переходные отверстия для отвода тепла вместо электричества наружу многослойных плат. Большие плоскости питания и заземления также помогут рассеивать тепло, поскольку большие площади будут излучать более эффективно.
Теплообменники — Теплообменники часто используются в обычных установках переменного тока. Они используют хладагент и цикл испарения / конденсации для передачи тепла от одной зоны к другой. В печатных платах есть два основных типа теплообменников: тепловые трубки и холодные пластины.Основное различие между ними — форм-фактор; тепловые трубки тонкие, а холодные пластины широкие. Такая система может быть очень маленькой и эффективно передавать тепло. У него также низкая вероятность отказа, поскольку это автономная система без механических компонентов.
Капельное охлаждение — Этот экспериментальный вид охлаждения включает в себя тот же процесс, что и в теплообменниках. Основное отличие состоит в том, что жидкость в теплообменниках проходит относительно большое расстояние по горизонтали, тогда как здесь жидкость проходит небольшое расстояние по вертикали.Преимущество этой системы в том, что она автоматически реагирует на «горячие точки», которые могут образовываться на интегральных схемах (ИС). Кроме того, он может проводить и излучать тепловую энергию, как теплоотвод для рассеивания энергии, но с большим эффектом, поскольку он может проводить как в горизонтальном, так и в вертикальном направлениях.
Вот что происходит, когда у вас нет никакого охлаждения.
Возможно, я не смогу помочь вам победить летнюю жару, но эти методы помогут вам охладить доски.Все эти пассивные процессы сохранят мощность вашей схемы и обычно занимают меньше места, чем система. Если вас беспокоят мощность и пространство, попробуйте одну из этих систем.
Теперь, когда у вас есть отличная система охлаждения, вам нужен материал для печатной платы. Если вы собираетесь разрабатывать платы, я бы порекомендовал вам использовать CircuitStudio®. Его множество продвинутых инструментов поможет вам сохранять спокойствие при создании макетов.
Есть еще вопросы по управлению термопрокладкой? Вызовите специалиста Altium.
.Quick Bimetallic Strip Thermal Protector для батарейных блоков
ОСНОВНЫЕ ПРЕИМУЩЕСТВА
Миниатюрный размер
Низкое сопротивление менее 25 МОм
Положительное замыкание и размыкание с диском мгновенного действия
Повторяемость температурных характеристик в течение всего срока службы
Разборный корпус, подходящий для большинства процессов пропитки
Чувствительность к току и температуре для максимальной конструкции гибкость и применение
Широкий выбор проводов
Заменитель SENSATA 4MM / 6MM, PEPI и ISUZU IP405 / 505 серии
ПРИМЕНЕНИЕ
Батарейные блоки
Двигатели с экранированными полюсами
Электродвигатель и насос переменного тока
Балласты
Люминесцентные лампы
Отопительный прибор
Переносные электроинструменты
СЕРТИФИКАЦИЯ
0
0 E305764
R50109800АГЕНТСТВО | НОМЕР ФАЙЛА | СТАНДАРТНЫЙ НОМЕР | 873 | Защита двигателя | |
VDE | 40016121 | EN60730-2-2 | Защита электродвигателя | 0002 | |
EN60730-2-3 | Защита от освещения | ||||
TUV | R50110965 | EN60730-2-9 | |||
CB | CN5785 | IEN60730-2-2 | Защита двигателя | ||
CQC | CQC05002013372 | GB14536.1 GB14536.3 | Защита двигателя Пределы и регуляторы |
РАЗМЕР
мм)5,4
МОДЕЛЬ | L (мм) | W (мм) | W (мм) | ПРОВОД |
TB02-BB8D | 15 | 5,4 | 2,4 | 3266 — AWG24 # 3135 # 3135 # 3135 .длина 70 мм или по требованию заказчика |
TB02-BB1D | 11,5 | 5 | 2,4 | |
TB02-BB7D | 2,4 |
МАКСИМАЛЬНЫЕ КОНТАКТЫ
9004 0НАПРЯЖЕНИЕ | ТОК | |||||
12 В постоянного тока 012 В постоянного тока 030 | 3 ампера | |||||
125 В перем. Тока | 3 ампера | |||||
250 В перем. | ТЕМП. ОТКРЫТИЯ | RESET TEMP | CODE | OPEN TEMP | RESET TEMP | |
30 | 30 ± 3.5 ° C | ≥20 ° C | 95 | 95 ± 5 ° C | 70 ± 15 ° C | |
35 | 35 ± 4 ° C | ≥25 ° C | 100 | 100 ± 5 ° C | 70 ± 15 ° C | |
40 | 40 ± 4,5 C | ≥30 ° C | 105 | 105 ± 5 ° C | 75 ± 15 ° C | |
45 | 45 ± 5 ° C | ≥33 ° C | 110 | 110 ± 5 ° C | 75 ± 15 ° C | |
50 | 50 ± 5 ° C | ≥35 ° C | 115 90 044 | 115 ± 5 ° C | 80 ± 15 ° C | |
55 | 55 ± 5 ° C | 42 ± 6 ° C | 120 9000 | 120 ± 5 ° C | 85 ± 15 ° C | |
60 | 60 ± 5 ° C | 45 ± 8 ° C | 125 9000 | 125 ± 5 ° C | 85 ± 15 ° C | |
65 | 65 ± 5 ° C | 48 ± 10 ° C | 130 9000 | 130 ± 5 ° C | 90 ± 15 ° C | |
70 | 70 ± 5 ° C | 50 ± 12 ° C | 135 9000 | 135 ± 5 ° C | 95 ± 15 ° C | |
75 | 75 ± 5 ° C | 53 ± 14 ° C | 140 | 140 ± 5 ° C | 100 ± 15 ° C | |
80 | 80 ± 5 ° C | 55 ± 15 ° C | 145 | 145 ± 5 ° C | 100 ± 15 ° C | |
85 | 85 ± 5 ° C | 60 ± 15 ° C | 150 | 150 ± 5 ° C | 105 ± 15 ° C | |
90 | 90 ± 5 ° C | 65 ± 15 ° C | 155 | 155 ± 5 ° C | 110 ± 15 ° C |
ДРУГИЕ ПОДРОБНЫЕ ФОТОГРАФИИ