Перейти к содержанию
Гардеробные системы elfa, раздвижные двери, межкомнатные перегородки
  • Главная
  • Интерьер
  • Эко
  • Стиль
  • Дизайн

Теплопроводность полистирола: Показатели теплопроводности экструдированного и обычного пенополистирола

14.01.2021 автор alexxlab

Содержание

  • Показатели теплопроводности экструдированного и обычного пенополистирола
    • Что представляет собой пенополистирол
    • Что такое теплопроводность
    • От чего зависит теплопроводность
      • Зависимость от плотности
      • Зависимость от толщины
      • Расчет необходимой толщины материала
    • Экструдированный пенополистирол
    • Сравнение утеплителей
  • Таблица теплопроводности и других качеств материалов для утепления
    • Что такое теплопроводность?
      • Таблица теплопроводности утеплителей
      • Полезные показатели утеплителей
    • Кто на свете всех теплей?
      • Пенополиуретан или экструдированный пенополистирол
      • Минеральная вата или пенопласт
      • Другие утеплители
    • Выбирая утеплитель
  • Теплопроводность пенополистирола — какая она и от чего зависит
    • Что влияет на способность пенополистирола проводить тепло
    • Пенополистирол и другие утеплители: сравнение
  • от чего зависит, сравнение с минватой и Пеноплексом, цены
  • Теплопроводность пенопласта 50 мм в сравнении, таблица и результаты |
  • Теплопроводность пенопласта — точные данные
    • Общее описание
    • Характеристики теплопроводности пенопласта
    • Какие листы выбрать?
  • Теплопроводность полистирола — Большая химическая энциклопедия
  • теплопроводность
      • Рекомендуемые дополнительные знания
    • Примеры
    • Перечень значений теплопроводности
    • Измерение
      • Стандартные методы измерения
    • Связанные термины
      • Первое определение (общее)
      • Второе определение (здания)
    • Текстильная промышленность
    • Истоки
  • Теплопроводящие клеи, заливочные компаунды и смазки — системы смол.

Показатели теплопроводности экструдированного и обычного пенополистирола

Климат в России очень холодный, поэтому практически любой дом, построенный за городом, приходится утеплять. Для этого можно использовать самые разные материалы. Одним из наиболее популярных является пенополистирол. Монтируется этот утеплитель элементарно. Коэффициент же теплопроводности у него ниже, чем у любого другого современного изолятора.

Что представляет собой пенополистирол

Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.

Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.

Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.

Что такое теплопроводность

Узнать, насколько хорошо тот или иной материал способен сохранять тепло, можно по коэффициенту его теплопроводности. Определяют этот показатель очень просто. Берут кусок материала площадью в 1 м2 и толщиной в метр. Одну из его сторон нагревают, а противоположную ей оставляют холодной. При этом разница температур должна быть десятикратной. Далее смотрят какое количество тепла достигнет холодной стороны за один час. Измеряют теплопроводность в ваттах, разделенных на произведения метра и градуса (Вт/мК). При покупке пенополистирола для обшивки дома, лоджии или балкона обязательно следует посмотреть на этот показатель.

От чего зависит теплопроводность

Способность пенополистирольных плит сохранять тепло зависит в основном от двух факторов: плотности и толщины. Первый показатель определяется по количеству и размеру воздушных камер, составляющих структуру материала. Чем плотнее плита, тем больший коэффициент теплопроводности у нее будет.

Зависимость от плотности

В таблице ниже можно посмотреть каким именно образом теплопроводность пенополистирола зависит от его плотности.

Плотность (кг/м3)Теплопроводность (Вт/мК)
100.044
150.038
200.035
250.034
300.033
350.032

Представленная выше справочная информация, однако, скорее всего, может пригодиться только владельцам домов, использовавшим пенополистирол для утепления стен, пола или потолка довольно-таки давно. Дело в том, что при изготовлении современных марок этого материала производители используют специальные графитовые добавки, в результате чего зависимость теплопроводности от плотности плит сводится практически на нет. В этом можно убедиться, взглянув на показатели в таблице:

МаркаТеплопроводность (Вт/мК)
EPS 500.031-0.032
EPS 700.033-0.032
EPS 800.031
EPS 1000.03-0.033
EPS 1200.031
EPS 1500.03-0.031
EPS 2000.031

Зависимость от толщины

Разумеется, чем толще материал, тем лучше он сохраняет тепло. У современного пенополистирола толщина может колебаться в пределах 10-200 мм. По этому показателю его принято классифицировать на три больших группы:

  1. Плиты до 30 мм. Этот тонкий материал обычно используется при утеплении перегородок и внутренних стен зданий. Коэффициент его теплопроводности не превышает 0.035 Вт/мК.
  2. Материал толщиной до 100 мм. Пенополистирол этой группы может применяться для обшивки как внешних, так и для внутренних стен. Тепло такие плиты сохраняют очень хорошо и с успехом используются даже в регионах страны с суровым климатом. К примеру, материал толщиной 50 мм имеет теплопроводность в 0.031-0.032 Вт/Мк.
  3. Пенополистирол толщиной более 100 мм. Такие габаритные плиты чаще всего используются для изготовления опалубок при заливке фундаментов на Крайнем Севере. Теплопроводность их не превышает 0.031 Вт/мК.

Расчет необходимой толщины материала

Точно вычислить толщину необходимого для утепления дома пенополистирола довольно-таки сложно. Дело в том, что при выполнении этой операции следует учитывать массу самых разных факторов. К примеру, таких, как теплопроводность материала, выбранного для сооружения утепляемых конструкций и его разновидность, климат местности, тип облицовки и пр. Однако примерно рассчитать необходимую толщину плит все-таки можно. Для этого понадобятся следующие справочные данные:

  • показатель требуемого теплосопротивления ограждающих конструкций для данного конкретного региона;
  • коэффициент теплопроводности выбранной марки утеплителя.

Собственно сам расчет производится по формуле R=p/k, где p — толщина пенопласта, R — показатель теплосопротивления, k — коэффициент теплопроводности. К примеру, для Урала показатель R равен 3,3 м2•°C/Вт. Допустим, для утепления стен выбран материал марки EPS 70 с коэффициентом теплопроводности 0.033 Вт/мК. В этом случае расчет будет выглядеть следующим образом:

  • 3.3=p/0.033;
  • p=3.3*0.033=100.

То есть толщина утеплителя для наружных ограждающих конструкций на Урале должна составлять минимум 100 мм. Обычно владельцы домов холодных регионов обшивают стены, потолки и полы двумя слоями пенополистирола на 50 мм. При этом плиты верхнего слоя располагают таким образом, чтобы они перекрывали швы нижнего. Таким образом можно получить максимально эффективное утепление.

Экструдированный пенополистирол

Обычный утеплитель этого типа маркируется буквами EPS. Вторая разновидность материала — экструдированный пенополистирол обозначается буквами XPS. Отличаются такие плиты от обычных, прежде всего, структурой ячейки. Он у них не открытая, а закрытая. Поэтому экструдированный пенополистирол гораздо меньше простого набирает влагу. То есть способен сохранять свои теплоизоляционные качества в полной мере даже под воздействием самых неблагоприятных факторов внешней среды. Коэффициент теплопроводности экструдированного пенополистирола в зависимости от марки может составлять 0.027-0.033 Вт/мК.

Сравнение утеплителей

Таким образом, экструдированный и обычный пенополистирол считаются у владельцев загородных участков едва ли не самыми лучшими видами утеплителя. Ниже представляем вашему вниманию таблицу с коэффициентами теплопроводности других видов изоляторов.

МатериалКоэффициент теплопроводности (Вт/мК)
Минеральная вата0.045-0.07
Стекловата0.033-0.05
Керамзит0.16
Керамзитобетон0.31
Пенополиуретан0.02-0.041

Как видите, лучше пенополистирола, коэффициент теплопроводности которого составляет 0.031-0.033 Вт/мК, стены, потолки и полы можно утеплить только пенополиуретаном. Однако последний стоит очень дорого. К тому же при его нанесении используется специальное конструктивно сложное оборудование. А следовательно, наилучшим вариантом изолятора в плане способности сохранять тепло на данный момент является все же именно пенополистирол.

Оцените статью: Поделитесь с друзьями!

Таблица теплопроводности и других качеств материалов для утепления

Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.

Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.

Что такое теплопроводность?

Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.

В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.

Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.

Таблица теплопроводности утеплителей

В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.

Таблица теплопроводности утеплителей

  1. Утеплитель
Теплопроводность, Вт/(м*С)Плотность, кг/м3Паропроницаемость, мг/ (м*ч*Па)«+»«-»Горюч.
Пенополиуретан0,023320,0-0,052.Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция1.недешевый 2. Не устойчив к УФ-излучениюСамозатухающий
0,02940
0,03560
0,04180
Пенополистирол (пенопласт)0,038400,013-0,051.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем1. Хрупкий; 2. Не «дышит» и образует конденсатГ3 и Г4. Сопротивление возгоранию и самозатухание
0,041100
0,05150
Экструдированный пенополистирол0,031330,0131.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже.1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат.Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание
Минеральная (базальтовая) вата0,048500,49-0,61.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется1.НедешевыйОгнеупорный
0,056100
0,07200
Стекловолокно (стекловата)0,041-0,044155-2000,51.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат.Не горит
Пенопласт ПВХ0,0521250,0231.Жесткий и удобный в монтаже1.Недолговечен; 2.Плохая паропроницаемость и образование конденсатаГ3 и Г4. Сопротивление возгоранию и самозатухание
Древесные опилки0,07-0,18230—1.Дешевизна; 2.Экологичность1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажностиПожароопасен

Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.

Полезные показатели утеплителей

На какие основные показатели нужно обратить внимание при выборе утеплителя:

  • Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
  • Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
  • Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
  • Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
  • Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
  • Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
  • Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
  • Долговечность определяет срок службы материала;
  • Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
  • Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Минеральная вата или пенопласт

Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Выбирая утеплитель

Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».

Оцените статью: Поделитесь с друзьями!

Теплопроводность пенополистирола — какая она и от чего зависит

Обновлено: 01 ноября 2020

74503

Перечисляя параметры утеплителей, на первое место всегда ставят теплопроводность материала. Зависит она от того, сколько в данном веществе содержится воздуха. Ведь именно воздушная среда служит отличным естественным теплоизолятором. Заметим, что способность проводить тепло уменьшается при увеличении разреженности среды. Так что лучше всего держит тепло прослойка из вакуума.

На этом принципе основана работа термосов. Но при строительстве вакуум создать проблематично, поэтому ограничиваются обычным воздухом. К примеру, низкая теплопроводность пенополистирола, особенно экструдированного, обусловлена тем, что этого самого воздуха в нем хоть отбавляй.

Что влияет на способность пенополистирола проводить тепло

Чтобы наглядно понять, что такое теплопроводность, возьмем кусок материала метровой толщины и площадью один квадратный метр. Причем одну его сторону нагреваем, а вторую оставляем холодной. Разница этих температур должна быть десятикратной. Измерив количество теплоты, которое за одну секунду переходит на холодную сторону, получаем коэффициент теплопроводности.

Отчего же именно пенополистирол способен хорошо сохранять как тепло, так и холод? Оказывается, всё дело в его строении. Конструктивно данный материал состоит из множества герметичных многогранных ячеек, имеющих размер от 2 до 8 миллиметров. Внутри у них находится воздух – он составляет 98 процентов и служит великолепным теплоизолятором. На полистирол приходится 2% от объёма.А по массе полистирол составляет 100%, т.к. воздух, условно говоря, не имеет массы.

Надо заметить, что теплопроводность экструдированного пенополистирола остается неизменной по прошествии времени. Это выгодно отличает данный материал от других пенопластов, ячейки которых наполнены не воздухом, а иным газом. Ведь этот газ обладает способностью постепенно улетучиваться, а воздух так и остается внутри герметичных пенополистирольных ячеек.

Покупая пенопласт, мы обычно спрашиваем продавца о том, каково значение плотности данного материала. Ведь мы привыкли, что плотность и способность проводить тепло неразрывно связаны друг с другом. Существуют даже таблицы этой зависимости, с помощью которых можно выбрать подходящую марку утеплителя.

Плотность пенополистирола кг/м3Теплопроводность Вт./МКв
10 0,044
15 0,038
20 0,035
25 0,034
30 0,033
35 0,032

Однако в нынешнее время придумали улучшенный утеплитель, в который введены графитовые добавки. Благодаря им коэффициент теплопроводности пенополистирола различной плотности остается неизменным. Его значение — от 0,03 до 0,033 ватта на метр на Кельвин. Так что теперь, приобретая современный улучшенный ЭППС, нет надобности проверять его плотность. 

Маркировка пенополистирола теплопроводность которого не зависит от плотности:

Марка пенополистиролаТеплопроводность Вт./МКв
EPS 50 0.031 — 0.032
EPS 70 0.033 — 0.032
EPS 80 0.031
EPS 100 0.030 — 0.033
EPS 120 0.031
EPS 150 0.030 — 0.031
EPS 200 0.031

Пенополистирол и другие утеплители: сравнение

Сравним теплопроводность минеральной ваты и пенополистирола. У последнего данный показатель меньше и составляет – от 0,028 до 0,034 ватта на метр на Кельвин. Теплоизоляционные свойства ЭППС без графитовых добавок уменьшаются с увеличением плотности. Так, например, экструдированный пенополистирол, теплопроводность которого 0,03 ватта на метр на Кельвин, обладает плотностью 45 килограммов на кубический метр.

Сравнив данные показатели у разнообразных утеплителей, можно сделать вывод в пользу ЭППС. Двухсантиметровый слой этого материала держит тепло так же, как минвата слоем 3,8 сантиметра, обычный пенопласт слоем 3 сантиметра, деревянная доска толщиной 20 сантиметров. Кирпичом же придется выложить стенку 37 сантиметров толщиной, а пенобетоном – 27 сантиметров. Впечатляюще, не так ли?

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

от чего зависит, сравнение с минватой и Пеноплексом, цены

Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.

Оглавление:

  1. От чего зависит теплопроводность?
  2. Сравнение с Пеноплексом и минватой
  3. Цена пенополистирола

Что влияет на теплопередачу?

Существует несколько факторов, которые значительно влияют на ее величину:

  • наличие пор и их структура;
  • плотность, толщина;
  • влагопоглощаемость.

Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.

Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.

Таблица с величинами коэффициентов теплопроводности:

Наименование теплоизоляцииПлотность, кг/м3Теплопроводность, Вт/м·К
Минвата2000,08
1250,07
ПенополистиролПСБ-С 15до 150,043
ПСБ-С 2515,1-250,041
ПСБ-С 3515,1-350,038
ПСБ-С 5015,1-500,041
Пеноплекс33-450,03-0,032
Пустотелый керамический кирпич12000,52
Сплошной силикатный кирпич18000,47
Стекловата75-1750,032-0,041

Значение величины теплопроводности гранул пенопласта в зависимости от толщины:

Толщина, ммКоэффициент теплопередачи, Вт/м·К
300,04
500,03-0,037
1000,03-0,046
1500,02

Сравнение с другими утеплителями

Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.

Сравнительная таблица Пеноплекса и пенополистирола:

ПенопластПеноплекс
Плотность, кг/м31825-32
Влагопоглощаемость, %0,8-1,20,4
Паропроницаемость, мг/(м·ч·Па)0,050,02
Теплопроводность, Вт/м·К0,031-0,0410,03

По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.

По всем свойствам пенопласт и в сравнении с минватой весьма различается:

Минвата
Плотность, кг/м310-300
Влагопоглощаемость, %более 1%
Паропроницаемость, мг/(м·ч·Па)0,4-0,5
Теплопередача, Вт/м·К0,045 (при 35 кг/м3) -0,7

По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.

Стоимость

Таблица цен, по которым можно купить пенопласт:

Наименование марки пенополистиролаРазмеры, мм (длина/ширина/толщина)Плотность, кг/м3Стоимость за м2, рубли
KnaufTherm Compack1000x600x5010-15150
Therm Wall Light1000x1200x10010-12190
1000х1200х5010-12
100
1000х1200х2010-1240
Therm Facade1000x1200x10015,1-17,2390
Therm Wall2000х1200х5010-12150
ПСБ-С 151000х1000х201550
1000х1000х3060
1000х1000х4080
1000х1000х5090
1000х1000х100170
ПСБ-С 251000х1000х202080
1000х1000х30120
1000х1000х40140
1000х1000х50150
1000х1000х100300
ПСБ-С 351000х1000х2035100
1000х1000х30140
1000х1000х40180
1000х1000х50200
1000х1000х100400

Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.

Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.

Теплопроводность пенопласта 50 мм в сравнении, таблица и результаты |

Немного об утеплении. Рассмотрим теплопроводность пенопласта 50 мм в сравнении. Таблицу целиком приводить не будем, озвучим лишь некоторые основные моменты.

Почему теплопроводность пенопласта целесообразно рассматривать именно в сравнении с другими видами теплоизоляторов? И почему для анализа выбрано изделие толщиной 50 мм?

На второй вопрос ответ прост.  Листы этой толщины пользуются наибольшей популярностью в малоэтажном строительстве. Причем идет продукт на утепление как внутренних, так и наружных стен. Следует сказать, что такие листы помимо выполнения своей основной функции по теплозащите еще и великолепно снижают передачу нежелательных шумов.

А при чем тут сравнение с остальными видами утеплителя? Оно наглядно показывает, что пенопласт 50 мм значительно превосходит остальных конкурентов.

Происходит это из-за того, что данный материал практически весь состоит из воздуха. А воздух, как известно, обладает чрезвычайно низкой теплопроводностью, порядка 0,027Вт/мК.

Средние же значения этой величины для пенопласта колеблются в пределах 0,037Вт/мК-0,043Вт/мК. Если изобразить сравнение теплоизолирующих материалов в графическом виде, картинка будет выглядеть примерно вот так.

Наш продукт явно вне конкуренции.

Но какова теплопроводность пенопласта 50 мм в сравнении с остальными утеплителями в цифровом выражении? В табличном виде?

Ведь именно такой формат наиболее нагляден?

Если расставить приоритеты по коэффициенту теплопередачи, таблица будет смотреться так.

Но все это, так сказать, теория. В которую вдаваться обычному застройщику неинтересно. Его интересуют практические значения теплопроводности пенопласта (допустим, толщиной 50) в сравнении с другими изоляторами. Озвучиваем несколько цифр.

  • Лист пенопласта 50 мм (по СНиП РФ) по теплоизолирующим свойствам равнозначен кирпичной кладке толщиной 850 мм.
  • Такой же лист будет эквивалентен вдвое большему объему минеральной ваты.
  • Плита пенопласта 100 мм эквивалентна слою 123 мм вспененного пенополистирола.
На заметку. Пожалуй, только пеноплекс перекрывает эти показатели. Для создания нормальной температуры в помещении потребуется его слой около 0,25 см.

Можно, конечно, еще порыться в таблицах и справочниках, произвести сравнение, сделать выводы. Но мы одним предложением выразим суть вопроса.

Если для сохранения определенного значения величины энергосбережения потребен слой дерева 45 см или кирпича 201 см, то пенопласта — всего лишь 12 см, благодаря его низкой теплопроводности.

28.11.2017Egor11

Теплопроводность пенопласта — точные данные

Пенопласт имеет следующие преимущества перед другими утеплительными материалами: экологичность, лёгкость, гигроскопичность, невысокая стоимость. Однако, главное достоинство — низкая теплопроводность пенопласта, которая делает его одним из наиболее распространенных теплоизолирующих материалов.

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Характеристики теплопроводности пенопласта

Для того чтобы рассмотреть такую характеристику, как теплопроводность пенопласта, разберемся для начала, что из себя представляет в принципе теплопроводность материалов. Теплопроводностью называют количественную характеристику способности тела проводить тепло.

Это количество тепловой энергии (Ватт), которое любой материал способен провести через себя (метр), при определенной температуре (С) за определенное время. Обозначается — λ и выражается Вт/м•С.

Определим оптимальные размеры данного утеплителя исходя из его теплопроводных характеристик. На рынке стройматериалов большое множество различных утеплителей. Пенопласт, как мы уже знаем, обладает теплопроводностью очень низкой, но эта величина зависит от марки материала.

Например, пенопласт марки ПСБ-С 50 имеет плотность 50 кг/м3. Таким образом, его теплопроводность составляет 0,041 Вт/м•С (данные указаны при 20-30 С). Для пенопласта марки ПСБ-С 25 значение будет 0,041 Вт/м•С, а марки ПСБ-С 35 – 0,038 Вт/м•С. Приведенные величины коэффициентов теплопроводности указаны для пенопласта одинаковой толщины.

Наиболее заметна теплопроводность пенопласта при сопоставлении значений с другими теплоизоляционными материалами. К примеру, лист пенопласта 30-40 мм аналогичен объёму минваты в несколько раз большей, а толщина листа 150 мм заменяет 185 мм пенополистирола. Конечно, есть материалы, у которых коэффициент ниже. К таким относится и пеноплекс. 30 мм пеноплекса смогут заменить 40 мм пенопласта, при аналогичных условиях.

Какие листы выбрать?

Чтобы добиться наиболее эффективной теплоизоляции стены, необходимо правильно рассчитать толщину используемого утеплителя. Для примера рассчитаем, какой толщины нужен утеплитель для стены толщиной в один кирпич.

Сначала необходимо узнать общее теплосопротивление. Это постоянное значение, зависящее от климатических условий в определенной области страны. На юге России она составляет 2,8 кВт/м2, для полосы умеренного климата — 4,2 кВт/м2. Затем найдем теплосопротивление кирпичной кладки: R = p/k, где p – толщина стены, а k – коэффициент, указывающий, насколько сильно стена проводит тепло.

Имея начальные данные, мы можем узнать, какое теплосопротивление утеплителя необходимо использовать, применив формулу p=R*k. где R — общее теплосопротивление, а k — значение теплопроводности утеплителя.

Возьмем для примера пенопласт марки ПСБ-С 35, имеющий плотность 35 кг/м3 для стены, толщиной в один кирпич (0,25 м) в регионе средней полосы России. Общее теплосопротивление имеет значение 4,2 кВт/м2.

Для начала необходимо узнать теплосопротивление нашей стены (R1). Коэффициент для силикатного пустотного кирпича составляет 0,76 Вт/м•С (k1), толщина – 0,25 м (p1). Находим теплосопротивление:

R1 = p1 / k1 = 0,25 / 0,76 = 0,32 (кВт/м2).

Теперь находим теплосопротивление для утеплителя (R2):

R2 = R – R1 = 4.2 – 0,32 = 3,88 (кВт/м2)

Значение теплосопротивления пенопласта ПСБ-С 35 (k2) равен 0,038 Вт/м•С. Находим требуемую толщину пенопласта (p2):

p2 = R2*k2 = 3.88*0.038 = 0.15 м.

Вывод: при заданных условиях нам необходим пенопласт ПСБ-С 35 15 см.

Аналогичным способом можно сделать расчеты для любого материала, используемого в качестве утеплителя. Коэффициенты теплопроводности разных строительных материалов можно найти в специальной литературе или в сети Интернет.

Теплопроводность полистирола — Большая химическая энциклопедия

Рис. 3. Влияние старения на теплопроводность ячеистых пластиков A, экстендированного полистирола B, полиуретана без покрытия C, фенола без покрытия и D, полиуретана …
Полиуретан. Полиуретаны (пу) преимущественно термореактивные. Процессы приготовления пенополиуретана состоят из нескольких этапов (см. Уретановые полимеры) и множества вариаций, которые приводят к продуктам с очень разными свойствами.Пенополиуретан может иметь довольно низкие значения теплопроводности, один из самых низких из всех типов теплоизоляции, и заменил полистирол и стекловолокно в качестве теплоизоляции в холодильной технике. Напыляемую пену можно наносить на стены, крыши, резервуары и трубы, а также непосредственно между стенами или поверхностями. Плиты можно использовать в качестве утеплителя обычными способами. [Pg.328]

Для материалов эквивалентной плотности вспененные водой полиуретаны и вспененный полистирол из углеводородов имеют схожую теплопроводность.Это связано с тем, что определяющим фактором, определяющим проводимость, является природа газа, присутствующего в полостях. В обоих вышеупомянутых случаях воздух во всех смыслах и целях обычно заменяет любой остаточный продувочный газ либо во время производства, либо вскоре после него. Пенополиуретаны, изготовленные с использованием фторуглеродов, имеют более низкую теплопроводность (0,12-0,15 БТЕ в час ° F) (0,017-0,022 Вт / мК) из-за более низкой проводимости газа. Сравнительные значения теплопроводности воздуха, двуокиси углерода и монофтортрихлорметана приведены в таблице 27.3. [Pg.802]

За исключением случаев, когда пена окружена оболочкой из относительно непроницаемого материала, можно было бы ожидать, что выдуваемый газ будет диффундировать и заменяться воздухом, а теплопроводность пен будет увеличиваться до тех пор, пока они приблизились к пенополистиролу аналогичной плотности. Пока это … [Pg.802]

Рис. 4.35. Зависимость теплопроводности гранул пенополистирола от плотности. Перепечатано с разрешения компании Dow Chemical Company.Авторское право 1966.
Рис. 4. Теплопроводность ячеистых пластиков A, экструдированного полистирола, 32 кг / м3, B, полиуретана, 32 кг / м3 и C, пены ПВХ, 32 кг / м3.
Определение характеристик коллоидов не является классическим применением Th-FFF. Тем не менее, Th-FFF был впервые применен к частицам кремнезема, взвешенным в толуоле, для проверки корреляции между термодиффузией и теплопроводностью [397].Несмотря на то, что было достигнуто слабое удерживание, дальнейшие исследования не проводились до работы Лю и Гиддингса [398], которые фракционировали латексные шарики полистирола в диапазоне от 90 до 430 нм в ацетонитриле, применяя низкий AT, равный всего 17 К. Позже полистирол и полибутадиеновые латексы с размером частиц от 50 до 10 мкм также фракционировали в водных суспензиях, несмотря на слабую термодиффузию [215] (см. рис. 30). Th-FFF также чувствителен к составу поверхности коллоидов (см. Работу по блок-сополимерным мицеллам), недавние усилия в этой области были посвящены анализу поверхности коллоидных частиц [399 400].[Pg.154]

В настоящей работе значения теплопроводности k были определены с помощью датчика теплопроводности (24). Давно известно, что сера имеет низкую теплопроводность, хотя в таких материалах, как ПВХ и пенополистирол, эти значения еще ниже. Композиты на серной связке, изготовленные с недорогими наполнителями, такими как грунт и песок, имеют теплопроводность, которая ниже, чем у типичного портландцементного бетона, но со значениями выше, чем у самой серы.Однако значения для композитов все еще низкие, что можно увидеть при сравнении со значениями для проводников, таких как сталь и медь (Таблица II). [Стр.112]

Рисунок 10.3 Влияние плотности на теплопроводность жестких ячеистых полимеров. A, полистирол [25] B, полистирол [37] C, полиуретан-воздух [37] D, полиуретан-CFC 11 (CCI3F) [70] E, полиуретан [37] F, фенолформальдегид [37] G, эбонит [ 37]. Чтобы преобразовать кг / м3 в фунты / фут3, умножьте на 0,0624. Воспроизведено по Ф.O. Guenther, SPE Transactions, 2, 243 (1962), с разрешения общества инженеров по пластмассам, Брукфилд, Коннектикут, США …
Ячеистые полимеры, особенно полистирол и полиуретан, также широко используются для изоляции труб и сосудов. Использование пористой резины и ячеистого поливинилхлорида в изоляции для труб небольшого диаметра объясняется их простотой применения, свойствами горения и низкой теплопроводностью. [Стр.223]

Dow и BASF независимо друг от друга разработали составы пенополистирола, которые не содержат ГХФУ или вспенивающих агентов ГФУ [88,113-118]. Поскольку эти пены не содержат улавливающих газов, которые имеют желаемые изоляционные свойства, для этого использовались инфракрасные ослабители. улучшают теплопроводность вспененных изделий. [Pg.227]

Введение. Было признано, что жесткие пенополиуретаны, полученные экструзией с раздувом CFC-11, являются изоляционными материалами с самой низкой теплопроводностью по сравнению с другими изоляционными материалами, такими как жесткие вспененные полиуретаны, стекловолоконные материалы или пенополистирол.[Стр.88]

Этот тип пенопласта доступен в двух формах: экструдированный пенополистирол и пенополистирол для формованных пенопластов. Пенополистирол — это легкий пенопласт с закрытыми порами, с низкой теплопроводностью и отличной водостойкостью. Они соответствуют требованиям к низкотемпературной изоляции и плавучести (6). [Pg.235]

Пены карбамидоформальдегидные обычно представляют собой хрупкие структуры с низкой прочностью на сжатие (менее 50 фунтов на квадратный дюйм или 0,34 МПа). К ним может применяться термин «хрупкие».Это губчатые пены с открытыми ячейками, способные впитывать большое количество воды. Пены Hiese также обладают теплоизоляционными и звукоизолирующими свойствами, обычными для пен с низкой плотностью. Например, их теплопроводность находится в пределах значений, указанных для пенополистирола (0,24–0,33). Это результат их низкой плотности и размера клетки улитки (5). [Pg.257]

AH 103 EPS 303 Руководство по отчетности о свойствах теплопередачи изоляционных материалов из пенополистирола, теплопроводности и проницаемости построенных строительных систем.[Pg.350]


теплопроводность


В физике теплопроводность , k — это свойство материала, которое указывает на его способность проводить тепло. Он используется в основном в законе Фурье для теплопроводности.

Определяется как количество тепла Δ Q , переданное за время Δ t через толщину L в направлении, нормальном к поверхности площадью A , из-за разницы температур Δ T , в установившемся режиме и когда теплопередача зависит только от температурного градиента.

теплопроводность = расход тепла × расстояние / (площадь × разница температур)
С другой стороны, это можно рассматривать как поток тепла (энергия на единицу площади в единицу времени), деленный на градиент температуры (разность температур на единицу длины)


Типичными единицами являются СИ: Вт / (м · К) и английские единицы: британские тепловые единицы · фут / (час · фут² · ° F).Для преобразования между ними используйте соотношение 1 Британские тепловые единицы · фут / (ч · фут² · ° F) = 1,730735 Вт / (м · K). [Справочник инженеров-химиков Perry, 7-е издание, таблица 1-4]

Рекомендуемые дополнительные знания

Примеры

В металлах теплопроводность приблизительно соответствует электропроводности в соответствии с законом Видемана-Франца, поскольку свободно движущиеся валентные электроны переносят не только электрический ток, но и тепловую энергию.Однако общая корреляция между электропроводностью и теплопроводностью не сохраняется для других материалов из-за повышенного значения фононных носителей для тепла в неметаллах. Как показано в таблице ниже, серебро с высокой электропроводностью менее теплопроводно, чем алмаз, который является электрическим изолятором.

Теплопроводность зависит от многих свойств материала, особенно от его структуры и температуры. Например, чистые кристаллические вещества демонстрируют очень разную теплопроводность вдоль разных осей кристалла из-за различий в фононном взаимодействии вдоль данной оси кристалла.Сапфир является ярким примером переменной теплопроводности в зависимости от ориентации и температуры, для которой в справочнике CRC указана теплопроводность 2,6 Вт / (м · К), перпендикулярная оси c при 373 K, но 6000 Вт / ( м · К) при 36 градусах от оси c и 35 К (возможна опечатка?).

Воздух и другие газы, как правило, являются хорошими изоляторами при отсутствии конвекции. Следовательно, многие изоляционные материалы функционируют просто за счет наличия большого количества заполненных газом карманов, которые предотвращают крупномасштабную конвекцию.Их примеры включают вспененный и экструдированный полистирол (обычно называемый «пенополистиролом») и аэрогель диоксида кремния. Природные, биологические изоляторы, такие как мех и перья, достигают аналогичного эффекта, резко подавляя конвекцию воздуха или воды возле кожи животного.

Теплопроводность играет важную роль в теплоизоляции зданий и в смежных областях. Однако материалы, используемые в таких отраслях, редко подвергаются стандартам химической чистоты. Ниже перечислены значения k некоторых строительных материалов.Их следует считать приблизительными из-за неопределенностей, связанных с определениями материалов.

Следующая таблица предназначена в качестве небольшой выборки данных для иллюстрации теплопроводности различных типов веществ. Более полный перечень измеренных значений k см. В справочных материалах.

Перечень значений теплопроводности

Основная статья: Список значений теплопроводности

Это список приблизительных значений теплопроводности k для некоторых распространенных материалов.Пожалуйста, обратитесь к списку теплопроводности для получения более точных значений, справочных материалов и подробной информации.

Измерение

Для получения хороших проводников тепла можно использовать метод стержня Серла. [1] Для плохих проводников тепла можно использовать дисковый метод Лиза. [2] Альтернативный традиционный метод с использованием реальных термометров описан в [3]. Краткий обзор новых методов измерения теплопроводности, температуропроводности и удельной теплоемкости в рамках одного измерения доступен в [4].Тестер теплопроводности, один из инструментов геммологии, определяет, являются ли драгоценные камни настоящими алмазами, используя уникально высокую теплопроводность алмаза.

Стандартные методы измерения

  • Стандарт IEEE 442-1981, «Руководство IEEE по измерениям теплового сопротивления почвы» [5]
  • Стандарт IEEE 98-2002, «Стандарт подготовки процедур испытаний для термической оценки твердых электроизоляционных материалов», ISBN 0-7381-3277-2 [6]
  • Стандарт ASTM D5470-06, «Стандартный метод испытаний свойств теплопередачи теплопроводных электроизоляционных материалов» [7]
  • Стандарт ASTM E1225-04, «Стандартный метод испытания теплопроводности твердых тел с помощью метода защищенного сравнительного продольного теплового потока» [8]
  • Стандарт ASTM D5930-01, «Стандартный метод испытания теплопроводности пластмасс с помощью метода нестационарного линейного источника» [9]
  • Стандарт ASTM D2717-95, «Стандартный метод испытаний теплопроводности жидкостей» [10]

Связанные термины

Обратная величина теплопроводности равна , удельное тепловое сопротивление измеряется в кельвин-метрах на ватт (К · м · Вт −1 ).

При работе с известным количеством материала можно описать его теплопроводность и взаимное свойство тепловое сопротивление . К сожалению, у этих терминов есть разные определения.

Первое определение (общее)

Для общего научного использования теплопроводность — это количество тепла, которое проходит за единицу времени через пластину определенной площади и толщины , когда ее противоположные грани различаются по температуре на один градус.Для пластины с теплопроводностью k , площадью A и толщиной L это составляет kA / L , измеренное в Вт · K −1 . Это соответствует соотношению между электропроводностью (А · м -1 · В -1 ) и электрической проводимостью (А · В -1 ).

Существует также мера, известная как коэффициент теплопередачи: количество тепла, которое проходит в единицу времени через единицу площади пластины определенной толщины, когда ее противоположные стороны отличаются по температуре на один градус.Обратное — , теплоизоляция . В итоге:

  • теплопроводность = кА / L , измеренная в Вт · К −1
    • тепловое сопротивление = L / кА , измеренная в К · Вт −1
  • коэффициент теплопередачи = k / L , измеренный в W · K −1 · m −2
    • теплоизоляция = L / k , измеренная в K · м² · Вт −1 .

Коэффициент теплопередачи также известен как тепловая проводимость

Второе определение (здания)

Когда речь идет о зданиях, термическое сопротивление или R-value означает то, что описано выше как теплоизоляцию, а теплопроводность , означает обратное. Для материалов, соединенных последовательно, эти тепловые сопротивления (в отличие от проводимости) можно просто сложить, чтобы получить тепловое сопротивление для всего.

Третий член, коэффициент теплопередачи , включает теплопроводность конструкции наряду с теплопередачей за счет конвекции и излучения. Он измеряется в тех же единицах, что и теплопроводность, и иногда известен как комбинированный коэффициент теплопроводности . Термин U-значение является еще одним синонимом.

Таким образом, для пластины с теплопроводностью k (значение k [1] ), площадь A и толщина L :

  • теплопроводность = k / L , измеренная в Вт · K −1 · м −2 ;
  • термическое сопротивление ( значение R ) = л / k , измеряется в К · м² · Вт −1 ;
  • коэффициент теплопередачи (значение U ) = 1 / (Σ ( L / k )) + конвекция + излучение, измеряется в Вт · К −1 · м −2 .

Текстильная промышленность

В текстильных изделиях значение тог может указываться как мера теплового сопротивления вместо меры в единицах СИ.

Истоки

Теплопроводность системы определяется тем, как взаимодействуют атомы, составляющие систему. Нет простых и правильных выражений для теплопроводности. Существует два разных подхода к расчету теплопроводности системы. Первый подход использует отношения Грина-Кубо.Хотя это выражение является точным *, для расчета теплопроводности плотной жидкости или твердого тела с использованием этого соотношения требуется использование компьютерного моделирования молекулярной динамики.

  • Термин «точный» означает, что уравнения разрешимы.

Второй подход основан на подходе времени релаксации. Известно, что из-за ангармонизма внутри кристаллического потенциала фононы в системе рассеиваются. Есть три основных механизма рассеяния:

  • Граничное рассеяние, попадание фонона на границу системы;
  • Рассеяние на дефекте массы, удары фонона о примесь внутри системы и рассеяние;
  • Фонон-фононное рассеяние, фонон распадается на два фонона с более низкой энергией или фонон сталкивается с другим фононом и сливается с одним фононом с более высокой энергией. Определение значения k от Plastics New Zealand
    • Каллистер, Уильям (2003). «Приложение B», Материаловедение и инженерия — Введение . John Wiley & Sons, INC, 757. ISBN 0-471-22471-5 .
    • Холлидей, Дэвид; Резник, Роберт; И Уокер, Джерл (1997). Основы физики (5-е изд.). John Wiley and Sons, INC., NY ISBN 0-471-10558-9 .
    • TM 5-852-6 AFR 88-19, том 6 (публикация армейского корпуса инженеров)
    • Шривастава Г.П (1990), «Физика фононов». Адам Хилгер, IOP Publishing Ltd, Бристоль.

Теплопроводящие клеи, заливочные компаунды и смазки — системы смол.

Epoxies, Etc. — ведущий производитель теплопроводящих эпоксидных смол, уретанов и силиконов. Наши химики и инженеры по применению разработали составы полимеров, которые обеспечивают различные графики отверждения, вязкости и быстрый непрерывный отвод тепла для различных электронных и промышленных применений.

Наши полимерные системы включают теплопроводящие клеи, заливочные компаунды и смазки. В этих продуктах используются наполнители с высокой проводимостью, а также обеспечивается отличная электрическая изоляция.

Мы разработали перечисленные ниже теплопроводящие системы путем создания рецептур с уникальными комбинациями наполнителей, размеров частиц и методов диспергирования. Также доступны огнестойкие системы. Перечислены не все продукты, доступны индивидуальные рецептуры.

Краткое описание Вязкость, сП Теплопроводность, Вт / м · К Диапазон рабочих температур, ºC PDF
50-1220

Однокомпонентная теплопроводящая силиконовая смазка

X

50-1220 — однокомпонентная термопаста.Этот плотно заполненный теплоотводящий состав обеспечивает высокую теплопроводность, низкую утечку и высокую температурную стабильность. 50-1220 разработан для приложений, требующих быстрого рассеивания тепла и электрической изоляции.

Grease Like Paste 1.15 от -40 до +210
50-1225

Гибкий силикон с высокой термостойкостью

X

50-1225 имеет низкую вязкость, Силиконовый герметик и герметизирующий компаунд, отверждаемый при комнатной температуре.После отверждения этот материал образует мягкую, очень гибкую, огнестойкую и теплопроводную упаковку. 50-1225 можно использовать для заливки или герметизации электронных корпусов, содержащих чувствительные компоненты.

32,000 1,73 -65 до +210
50-1952

Теплопроводящий силикон с простым в использовании соотношением смеси 1: 1

X

50-1952 двухкомпонентный силиконовый герметик и герметизирующий состав.Эта силиконовая система предназначена для быстрой передачи тепла от электронных устройств, выделяющих тепло. 50-1952 имеет простое соотношение смеси 1: 1, может отверждаться в толстых секциях, не вызывает коррозии и устойчив к возврату. Черная силиконовая смола и белый активатор обеспечивают отличную визуальную индикацию полного смешивания.

30,000 1,1 -65 до +235
50-2151

Уретановая заливочная масса с низкой вязкостью

X

50-2151 FR является высокопроизводительным теплопроводным материалом уретановая система.Этот простой в использовании полиуретан с низкой вязкостью идеально подходит для заливки или герметизации хрупких электронных компонентов.

10,000 1,15 от -55 до +130
50-2366 FR

Уретан с низкими напряжениями и огнестойкостью

X

50-2366FR теплопроводный полиуретан соединение. Эта гибкая система разработана для снижения нагрузки на чувствительные компоненты во время и после отверждения.Система полиуретановой смолы 50-2366FR разработана для применений, требующих низкого экзотермического эффекта, низкой усадки и отличных электрических свойств. Эта система является хорошим выбором для заливки компонентов, устанавливаемых на поверхность, или для любых приложений, требующих низких напряжений, теплопроводности и огнестойкости.

9000 1,15 -65 до +135
50-2369 FR

Уретан, внесенный в список UL 94 V-0 был разработан в соответствии со строгими требованиями UL94 V-0 к негорючести.50-2369 FR Уретан внесен в список Underwriter’s Laboratory на соответствие UL94 V-0. Эта система обеспечивает отличную теплопередачу, низкий экзотермический эффект и отличные электрические свойства.

8,500 1,15 -65 до +135
50-3112

Быстрый эпоксидный клей для использования в системе TriggerBond

X

компонент 50-3112 Fast отверждаемый термопроводящий эпоксидный клей. Этот продукт был специально разработан для использования в удобной системе двойного ствола TriggerBond.50-3112 имеет простое соотношение смеси 1: 1 и развивает прочность на сдвиг внахлест 1,400 фунтов на квадратный дюйм (алюминий к алюминию) за четыре часа при комнатной температуре. Всего через двадцать четыре часа сила превышает 2200 фунтов на квадратный дюйм.

70,000 1.04 -40 до +120
50-3122

Однокомпонентный эпоксидный клей с широким темп. серия

X

50-3122 — однокомпонентный (смешивание не требуется) эпоксидный клей с уникальным сочетанием физических свойств.Этот клей обеспечивает как высокий сдвиг, так и высокую прочность на отслаивание. Он также способен поддерживать исключительно прочные связи в широком диапазоне температур от -60 до + 205 ° C. 50-3122 разработан для обеспечения превосходной устойчивости к ударам, тепловым ударам, вибрации и усталостному растрескиванию под напряжением.

165,000 1,44 от -60 до +205
50-3150FR

UL 94 V-0 Listed Epoxy

X

50-3150 FR Black Epoxy с Catalyst 190 Катализатор 30 внесен в список Underwriter’s Laboratory на соответствие UL94 VO.Эта система обеспечивает отличную теплопередачу, низкую усадку и отличные изоляционные свойства. Типичные применения для 50 3150 FR включают в себя изоляцию источников питания, трансформаторов, катушек, изоляторов, датчиков и т. Д. Эта система является отличным выбором для приложений, требующих высокой теплопроводности и огнестойкости.

30,000 2,16 от -60 до +200
50-3151 NC FR

Эпоксидная смола низкой вязкости соответствует негорючему стандарту UL 94 V-0

X

50-3151 NC FR был разработан в соответствии со строгими требованиями к негорючести UL 94 VO.Эта система обеспечивает отличную теплопередачу, низкую усадку и отличные изоляционные свойства. 50-3151 NC FR имеет низкую вязкость и поэтому обеспечивает отличную обтекаемость компонентов.

5,000 1,30 -65 до +190
50-3152 FR

Эпоксидная смола, внесенная в список UL 94 V-0

X

50-3152 FR Laboratories зарегистрирована в Underground для соответствия UL 94 V-0. Это двухкомпонентная эпоксидная система заливки и инкапсуляции.Эта полужесткая эпоксидная смола обладает отличной устойчивостью к ударам и вибрации, а также хорошей теплопроводностью. 50-3152 FR разработан для простоты использования. Он имеет удобное соотношение смеси 1: 1 и имеет низкую вязкость.

31000 1.01 -40 до +135
50-3170

Гибкая эпоксидная заливка и герметизирующая система

X

50-3170 обладает высокой теплопроводностью и теплопроводностью Состав резины разработан для тех областей применения, где требуется отличная электрическая изоляция и низкое напряжение во время отверждения.50-3170 можно использовать для соединения чувствительных компонентов или для заливки источников питания, катушек, стеклянных диодов и других хрупких узлов.

15000 1,73 от -70 до +150
50-3182 NC

Эпоксидная смола с высоким содержанием наполнителя с превосходными физическими свойствами

X

50-3182 NC представляет собой высоконаполненную эпоксидную смолу система с отличными физическими, электрическими и тепловыми свойствами. 50-3182 NC обеспечивает очень высокую теплопроводность, отличную электрическую изоляцию и низкое тепловое расширение.Это уникальное сочетание свойств делает эту систему идеальной для применений, где необходимо поддерживать электрическую изоляцию и механическую защиту при передаче тепла.

15000 1,66 от -55 до +205
50-3185 NC

Отвечает NASA по дегазации с Cat.190 или Cat. 30

X

50-3185 NC — это наполненный эпоксидный герметик, обладающий превосходными физическими, электрическими и термическими свойствами.50-3185 NC — отличный выбор там, где требуется низкое тепловое расширение, отличная электрическая изоляция и / или высокая теплопроводность. На выбор доступны три катализатора. После отверждения с помощью Catalyst 190 или Catalyst 30 эта система отвечает требованиям НАСА по дегазации.

16,000 1,36 от -55 до +205
50-3186 NC

Теплопроводящий эпоксидный клей

X

50-3186 NC является двухкомпонентным теплопроводным эпоксидным клеем .

No related posts.

Навигация по записям

Предыдущая запись:

Теплокнауф утеплитель: Утеплитель Кнауф ТеплоКнауф Стена 50 мм 6 м²

Следующая запись:

Приборы отопления для квартиры: Выбор радиатора отопления для квартир с центральным отоплением

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Рубрики

  • Дизайн
  • Дом
  • Интерьер
  • Кухня
  • Стиль
  • Эко
  • Разное
Copyright © 2019 "DoorsStyle" Все правва защищены. Политика конфиденциальности right