Перейти к содержанию
Гардеробные системы elfa, раздвижные двери, межкомнатные перегородки
  • Главная
  • Интерьер
  • Эко
  • Стиль
  • Дизайн

Теплопроводность пеноблока: Пенобетон: характеристики и теплопроводность

22.12.2020 автор alexxlab

Содержание

  • Теплопроводность пенобетона, коэффициент теплопередачи
    • Виды пеноблоков
    • Зависимость сопротивления теплопередаче от плотности бетона
    • Расчет теплопроводности стен из пенобетона
  • за что отвечают данные показатели
    • Что представляет собой пенобетон
    • Что такое теплопроводность, и каковы ее значения у пенобетона
      • Понятие теплопроводности, зависимость ее от иных характеристик
      • Сравнительный анализ теплопроводимости пенобетона и других материалов
    • Методы повышения способности к теплосохранению, расчеты минимальной толщины стены
      • Рассчитываем толщину стены из пеноблока с учетом региона
      • Методы изменения коэффициента теплопроводности будущего материала на стадии производственного цикла
      • Варианты утепления конструкций, возведенных из пенобетона
      • Кратко о колодцевой кладке
    • В заключение
  • Какой должна быть толщина стен из пенобетона: мнение специалистов
    • Как выбрать пенобетонные блоки
      • Теплоизоляционные блоки
      • Конструкционно-теплоизоляционные блоки
      • Конструкционные блоки
    • Расчет количества пеноблоков
    • Перегородки из пенобетонных блоков
  • Теплопроводность газобетона: коэффициент теплопроводности
    • Краткая характеристика газобетона
      • Обзор основных свойств и качеств
      • Классификация и сфера применения
    • Понятие теплопроводности и ее значение
      • Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей
      • Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами
      • Расчет оптимальной толщины стены
    • Обзор основных достоинств и недостатков строений, возведенных из газобетона
    • Метод испытания теплопроводности изделий
    • Основные итоги
  • оптимальная и рекомендуемая, какой должна быть, видео-инструкция по монтажу своими руками, фото
    • Характеристики материала
    • Толщина стен – вопрос с подвохом
    • Определяем толщину
      • Расчеты по теплопроводности
    • Строительный процесс – возводим стены
    • Особенности работы с пенобетоном
    • Вывод
  • Теплопроводность пенобетона различной плотности
  • Эффективная теплопроводность пенополиуретана с открытыми порами на основе теории фракталов
        • 1. Введение
        • 2. Микроструктуры пенополиуретана с открытыми порами и описание фрактала
        • 2.1. Микроструктуры
        • 2.2. Описание фрактала
  • Воздух — теплопроводность
      • Онлайн-калькулятор теплопроводности воздуха
  • 55 03 и температурах, приведенных в ° F: 999 9001: 999 9003 Теплопроводность [° F] [BTU (IT) / (h ft ° F)] [ккал (IT) / (hm K)] [мВт / м · К] -300 0.00484 0,00720 8,37 -200 0,00788 0,01172 13,63 -100 0,01068 0,01510864 0,0151086 20,77 -20 0,01277 0,01901 22,10 0 0,01328 0.01976 22,98 10 0,01353 0,02013 23,41 20 0,01378 0,02050 23,8104 40 0,01427 0,02123 24,70 50 0,01451 0,02160 25,12 60 0.01476 0,02196 25,54 70 0,01500 0,02232 25,95 80 0,01524 0,0221067 0,022103 120 0,01618 0,02408 28,00 140 0,01664 0,02477 28.80 160 0,01710 0,02545 29,60 180 0,01755 0,02612 30,38 0,0101 0,01911 0,02843 33,07 300 0,02018 0,03003 34,93 350 0.02123 0,03160 36,75 400 0,02226 0,03313 38,53 450 0,02327 0,03410 40101 600 0,02620 0,03898 45,34 700 0,02807 0.04177 48,58 800 0,02990 0,04449 51,74 1000 0,03342 0,04973 1200104 1400 0,04007 0,05963 69,35 1600 0,04325 0,06436 74.85 1800 0,04635 0,06898 80,23 2000 0,04941 0,07353 85,51 Преобразователь теплопроводности Единицы преобразования теплопроводности 03 тепловая единица (международная) / (фут-час, градус Фаренгейта) [Btu (IT) / (ft h ° F], британская тепловая единица (международная) / (дюйм-час, градус Фаренгейта) [BTU (IT) / (в h ° F) , британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(британские тепловые единицы (IT) дюйм) / (фут² час ° F)], килокалория / (метр час градус Цельсия) [ккал / (mh ° C)], джоуль / (сантиметр второй градус кельвина) [Дж / (см · с · K)], ватт / (метр градус кельвина) [Вт / (м ° C)], 1 Btu (IT) / (ft ч ° F) = 1/12 Btu (IT) / (в ч ° F) = 008333 британских тепловых единиц (IT) / (в ч ° F) = 12 британских тепловых единиц (IT) в / (фут 2 ч ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см · с · K) = 1,731 Вт / (м · К) 1 британских тепловых единиц (IT) / (в час · ° F) = 12 британских тепловых единиц (IT) / (фут · час · ° F) = 144 британских тепловых единицы (IT) · дюйм / (фут 2 час · ° F) = 17,858 ккал / (м · ч ° C) = 0,20769 Дж / (см · с · K) = 20,769 Вт / (м · K) 1 (британских тепловых единиц (IT) дюйм) / (фут² час ° F) = 0,08333 британских тепловых единиц (ИТ) / ( фут ч ° F) = 0,00694 британских тепловых единиц (IT) / (в час ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см · с · K) = 0,1442 Вт / (м · K) 1 Дж / ( см · с · K) = 100 Вт / (м · K) = 57,789 БТЕ (IT) / (фут · ч · ° F) = 4.8149 БТЕ (IT) / (в час ° F) = 693,35 (БТЕ (IT) дюйм) / (фут² час ° F) = 85,984 ккал / (мч ° C) 1 ккал / (мч ° C) = 0,6720 БТЕ (IT) / (фут · ч ° F) = 0,05600 Btu (IT) / (в час · ° F) = 8,0636 (BTU (IT) дюйм) / (фут 2 час · ° F) = 0,01163 Дж / (см · с · K ) = 1,163 Вт / (м · К) 1 Вт / (м · К) = 0,01 Дж / (см · с · К) = 0,5779 БТЕ (IT) / (фут · ч · ° F) = 0,04815 БТЕ (IT) / (дюйм · ч ° F) = 6,9335 (британских тепловых единиц (IT) дюйм) / (фут² ч ° F) = 0,85984 ккал / (мч ° C) Вернуться к началу Теплопроводность вспененного материала — Большая химическая энциклопедия
  • Влияние влажности на теплопроводность — Большая химическая энциклопедия
  • Эффективная теплопроводность пенобетона разной плотности
      • Прочность бетона
      • Глава 8 Проектирование бетонных смесей
      • Пожарные и бетонные конструкции
      • 1.5 Бетон (Часть I)
      • Всасывание почвы.Полное всасывание
      • Фильтр вспомогательной фильтрации
      • Устойчивая теплопроводность
      • Свойства свежего бетона
      • ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ
      • 2. ПОДГОТОВКА ИСПЫТАНИЙ.
      • Североамериканский нержавеющий
      • ПРИМЕНЕНИЕ ДЛЯ КОММЕРЧЕСКОГО ЗДАНИЯ
      • Лекция 9, Тепловые заметки, 3.054
      • Внутренняя система предотвращения плесени
      • Затвердевший бетон. Лекция № 14
  • ТЕПЛОПРОВОДНОСТЬ И КОЭФФИЦИЕНТ ТЕПЛОВОГО РАСШИРЕНИЯ КОМПОЗИТНЫХ ЛАМИНАТОВ GFRP С НАПОЛНИТЕЛЯМИ
      • ТЕХНИЧЕСКИЙ ПАСПОРТ
      • Основы доводки и полировки
      • 4 Термомеханический анализ (ТМА)
      • Процесс термической обработки
      • Термоклеи Ther-O-Bond 1500
      • ГЛАВА 6 ИЗМЕРЕНИЕ ИСПЫТАНИЯ НА ИЗНОС
      • Данные о продукте Green Thread
      • Инструментальная сталь для холодных работ AISI O1
      • Раздел 4: NiResist Iron
      • Североамериканский нержавеющий
      • Силановые связующие агенты
      • Подшипники скольжения из PTFE 04/10 149
      • APE T углепластик Аслан 500
      • ОБРАБОТКА РАЗЛИЧНЫХ МАТЕРИАЛОВ
      • Пропиточная машина
      • Термопластичные композиты
      • Оборудование для литья под давлением
      • Хорошие доски = результаты

Теплопроводность пенобетона, коэффициент теплопередачи

Теплопроводность пенобетона – один из основных показателей, влияющих на стремительное повышение интереса к данному материалу. Наряду с небольшим весом и значительными габаритами, идеальной геометрией и другими особенностями, существенно упрощающими и удешевляющими процесс строительства, теплоизоляционные характеристики пенобетона делают его одним из самых популярных материалов.

Коэффициент теплопроводности пенобетона может быть разным и зависит от числа, величины пор внутри ячеистого материала, уровня плотности. Марки с самыми высокими теплоизоляционными характеристиками демонстрируют невысокую прочность, материал с большой теплопроводностью способен выдерживать большие нагрузки. И часто главная задача при выборе марки пеноблока – сохранение баланса: оптимального уровня прочности и высокого теплосбережения.

По мере повышения коэффициента теплопроводности ухудшаются теплоизоляционные свойства материала: это значит, что зимой тепло будет уходить из дома быстро, а летом конструкция станет стремительно нагреваться. Пенобетон изготавливают из цемента, песка, воды и специального пенообразователя. Вещество вспенивает смесь, благодаря чему в структуре материала появляются воздушные поры закрытого типа. В них находится воздух, который сохраняет тепло.

Чем больше пор – тем более высокие характеристики теплоизоляции, но тем менее плотный и более хрупкий материал. Показатель теплопроводности меняется от марки к марке (у D100 минимальный, у D1200 – максимальный). Но в общем, если сравнивать пенобетон и другие строительные материалы (кирпич обычный или силикатный, бетон), ячеистый бетон значительно превосходит показатели остальных вариантов, немного уступая лишь дереву.

Виды пеноблоков

Пенобетон производят по единой технологии путем смешивания основных компонентов, разливки смеси в формы, сушки под давлением и высокой температурой в автоклаве, дальнейшей нарезки и складирования. Производство осуществляется по единой технологии, но вот состав раствора для заливки может быть разным. Чем меньше пенообразователя добавлено в смесь, тем более плотным и прочным, тяжелым получится материал.

Но за счет уменьшенного числа пор способность сохранять тепло у такого материала понижается пропорционально уменьшению количества пустот в структуре. По уровню плотности (а значит, и весу, прочности, теплопроводности) пенобетон делят на три основных категории – для теплоизоляции, строительства и комбинированный тип.

Основные виды пенобетонных блоков:
  1. Конструкционные (марки D900-1200) – плотность и вес, прочность максимальные за счет малого количества пор в структуре, можно использовать материал для кладки фундамента, создания цокольных этажей, несущих конструкций. Теплопроводность самая высокая, в диапазоне 0.29-0.38 Вт/м*К. Блоки предполагают обязательное проведение мероприятий по теплоизоляции.

  1. Конструкционно-теплоизоляционные (марки D500-800) – блоки демонстрируют средние показатели теплопроводности, плотности, прочности. Используются для кладки несущих стен, внутренних перегородок. Самый популярный материал на рынке, который чаще всего применяется в строительстве, особенно жилых зданий. Способность сохранять тепло средняя – теплопроводность в диапазоне от 0.15 до 0.29 Вт/м*К.
  2. Теплоизоляционные (марки D100-400) – применяются исключительно с целью утепления, наименее плотные и прочные, с самым небольшим значением теплопроводности (показатель на уровне 0.09-0.12 Вт/м*К). В структуре материала содержится максимальное число ячеек с воздухом. Строить здания и класть стены из материала нельзя, он выступает только теплоизоляционным слоем.

Зависимость сопротивления теплопередаче от плотности бетона

Воздух – эффективный натуральный теплоизоляционный материал. За счет того, что структура пеноблоков пористая, они хорошо сохраняют тепло и демонстрируют невысокий показатель теплопроводности (если сравнивать с другими строительными материалами). Так, значение намного ниже, чем у бетона или кирпича.

Обычным пользователям значения теплопроводности не говорят ни о чем, поэтому сравнить строительные материалы можно в таком примере: для получения стены, способной демонстрировать показатель теплопроводности на уровне 0.18 Вт/м*К, нужно применить пеноблоки марки D700 величиной 600х300х200 миллиметров. Для получения аналогичного значения при строительстве из шлакоблоков толщина стены должна быть минимум 108 сантиметров, из кирпича – около 140 сантиметров.

При расчете коэффициента теплопередачи учитывают уровень плотности пенобетона, который обозначается маркой и буквой D: так, индекс D900 значит, что один кубометр пенобетона данной марки весит 900 килограммов.

Коэффициент теплопроводности меняется от марки к марке и напрямую влияет на плотность/прочность материала. Блоки с минимальной прочностью и небольшим весом используют для выполнения мероприятий по теплоизоляции, подходят они для строительства межкомнатных перегородок, на которые будут воздействовать минимальные нагрузки. Плотность таких блоков должна быть на уровне 400-500 кг/м3.

Пенобетон с высоким показателем плотности (в районе 1000-1200 кг/м3) за счет уменьшенного размера и числа ячеек в структуре более плотный и прочный, но теплопередача выше. Такой материал используют для возведения несущих стен малоэтажных зданий. Средней плотности пеноблоки (в районе 600-700 кг/м3) демонстрируют свойства на среднем уровне: могут выдерживать оптимальные нагрузки и достаточно теплостойкие.

Расчет теплопроводности стен из пенобетона

Выполняя расчеты перед строительством здания, очень важно учитывать уровень теплопроводности, который влияет на выбор пеноблоков, а также поиск оптимальной толщины стены, возведенной из материала. Сначала определяются с вариантом выполнения стен: это могут быть кирпич/блок/штукатурка или блок, покрытый штукатуркой с обеих сторон.

Для выполнения расчетов нужно знать показатель коэффициента теплопередачи выбранных материалов, которые используются для строительства стены. Так, кирпич демонстрирует значение 0.56, штукатурка на уровне 0.58, блоки могут давать разные значения в зависимости от марки (обязательно нужно смотреть в таблице). Также важно учитывать коэффициент сопротивления стен теплопередаче – средний показатель обычно равен 3.5.

От общего значения 3.5 отнимают показатель сопротивления теплопередаче слоя штукатурки в 2 сантиметра (0.02/0.58=0.03), 12 сантиметров кирпича (0.12/0.56=0.21), если выбран первый вариант, либо 4 сантиметра штукатурки (0.04/0.58=0.06), если выбран второй вариант создания стен.

В первом варианте (если применяется кирпич) стена из пенобетона должна обеспечить показатель сопротивления теплопередаче на уровне 3.26. Так, если для строительства выбран пеноблок марки D600, толщина стены должна быть 45.6 сантиметра (3.26х0.14=456 миллиметров), если D800 – толщина стены нужна 68.4 сантиметра (3.26х0.21=684 миллиметра). Сделать стены тоньше и добиться нужных значений можно с использованием теплоизоляционных материалов.

Для расчета стены по второму варианту (пеноблок и штукатурка снаружи/внутри), значения будут такие: 3.5-0.06=3.44. А далее расчеты проводятся с учетом найденных значений в таблице, где указаны показатели теплопроводности для разных марок пенобетона.

Что учитывают при выборе пенобетона:
  • Оптимальная марка – обозначается индексом D, означает плотность, вес, прочность, теплопроводность. Чем выше марка, тем больше прочность/плотность, теплопроводность и вес.
  • Толщина стены – высчитывают в каждом случае отдельно, с учетом используемых материалов, теплоизоляции и других аспектов.
  • Качество пенобетона – материал лучше выбирать автоклавный, созданный в условиях завода, с применением специального оборудования, проверкой качества, выдачей сертификатов и гарантией соответствия всем указанным характеристикам.

Теплопроводность пенобетона – один из ключевых показателей, который обязательно нужно учитывать при выборе материала и составлении проекта будущего строения, выполнении расчетов, планировании всех этапов строительства.

за что отвечают данные показатели

Пенобетонные изделия

Теплопроводность — одна из основных характеристик пенобетона, ведь она отвечает за способность материала к теплосохранению. Данный критерий является зачастую определяющим в отношении сферы применения материала и оценки его эксплуатационных качеств.

В данном обзоре мы будем анализировать то, что такое теплопроводность пенобетона, от чего она зависит и каковы ее значения.

Содержание статьи

Что представляет собой пенобетон

Давайте, для начала, кратко познакомимся с самим материалом, и разберемся в его основных свойствах, ведь коэффициент теплопроводности пенобетона неразрывно связан со многими значениями иных характеристик.

Пенобетон – пористый материал, являющийся представителем ячеистых бетонов. Состоит он из смеси песка, воды, цемента и пенообразователя, который вызывает вспучивание раствора — и, как следствие, образование ячеек.

Пористая структура во многом определяет основной набор свойств, который мы сейчас и рассмотрим.

Структура пенобетонного блока, фото

Характеристики материала:

Плотность

Значение плотности пенобетона составляет от 300 до 1200 кг/м3. В зависимости от ее значения существует даже классификация, на которую мы обратим внимание чуть позже. Ведь коэффициент теплопроводности и показатель средней плотности неразрывно связаны между собой.

Такой ассортимент материала, в отношении плотности, позволяет применять его в различных сферах, начиная от теплоизоляции — и заканчивая сооружением несущих конструкций.

Прочность

Марки прочности продиктованы ГОСТ и стоят в зависимости от вышеуказанного свойства.

Минимальное значение для неавтоклавного пенобетона составляет В0,5, а максимальное (для автоклавного) – В12,5.

Чем вше средняя плотность, тем выше и марка прочности.

Морозостойкость

Морозостойкость отвечает за способность материала выдерживать определенное количество циклов заморозки и оттаивания.

В соответствии с требованием технической документации, минимальное значение должно составлять не менее 25 циклов, что касается исключительно материала, предназначенного для возведения наружных конструкций.

А вот, например, для теплоизоляционных изделий и перегородочных марка не установлена вовсе.

Максимальное значение может достигать 150 циклов.

Экологичность

О составе пенобетона мы уже говорили и смогли удостовериться в его экологичности, так как содержащиеся материалы не являются вредными.

Термоустойчивость

Пенобетон способен определенное время находиться под действием высоких температур, но этот промежуток времени не превышает 2-х часов.

Материал не горюч.

Влагопоглощение

Гигроскопичность для материала свойственна. Однако, в сравнении с другими представителями легких бетонов, она несколько снижена благодаря тому, что структура пор у него — закрытая. Показатель составляет около 10-15%.

Усадка

Усадка также для пенобетона свойственна. И это — один из основных недостатков.

Также стоит сказать о том, что пенобетон имеет достаточно широкую классификацию. Материал разделяется на виды в зависимости от: типа кремнеземистого компонента, типа вяжущего, метода твердения, показателя плотности.

Пенобетон выпускается, как становится очевидным, не только в жидком виде, но и в форме различных изделий, которые обладают различными характеристиками и имеют разную область применения. Это — панели, блоки, плиты, перемычки и многое другое.

Что такое теплопроводность, и каковы ее значения у пенобетона

Теперь давайте перейдем непосредственно в основной теме нашей статьи. Итак, теплопроводность пенобетонных блоков и пенобетона в целом: на что влияет данное свойство?

Понятие теплопроводности, зависимость ее от иных характеристик

Теплопроводность – это способность материала к сохранению температуры. То есть, здание, возведенное из определенного конструктивного материала, может быстро или медленно остывать и нагреваться. Вот именно на это и влияет показатель теплосохранения.

Пенобетон может похвастать вполне конкурентными значениями, для изделий в сухом состоянии характерны показатели от 0,08 до 0,37 Вт*мС. В эксплуатационных условиях значение несколько повысится, но это касается не только пенобетона, но и любого другого материала.

Как уже упоминалось, способность к теплосохранению стоит в зависимости от плотностных показателей материала. Давайте рассмотрим более подробно.

  • Коэффициент теплопроводности пенобетонных блоков, предназначенных для теплоизоляции, составляет около 0,08-0,10 Вт*мС. Называют такие изделия теплоизоляционными. Марка плотности у них – Д300, Д400.

Применение монолитного теплоизоляционного пенобетона низкой плотности

  • Если говорить про конструкционно-теплоизоляционный пенобетон, теплопроводность его – несколько выше, и составляет около 0,11-0,18 Вт*мС, а марка плотности варьируется в промежутке от Д500 до Д900.

Конструкционно-теплоизоляционные блоки

  • Если вы используете конструкционные пенобетонные блоки, теплопроводность которых будет составлять вплоть до 0,35 Вт*мС, знайте, что в противовес слабой способности к сохранению тепла, такие изделия характеризуются повышенными прочностными значениями. А плотность их достигает 1200 кг/м3.

Конструкционное изделие

Помимо теплопроводности, с повышением плотности возрастает и морозостойкость изделий — и, как правило, их долговечность.

Сравнительный анализ теплопроводимости пенобетона и других материалов

А теперь пришло время сравнить теплопроводность изделий из пенобетона с показателями ее у других популярных материалов для строительства.

Блоки пенобетонные: теплопроводность изделий и сравнение ее значений с другими материалами:

Материал (изделие)Показатель средней плотности (марка Д)Коэффициент теплопроводности материала, находящегося в сухом состоянии, Вт*мС

Газобетон

300-12000,09-0,38

Керамзитобетон

400-20000,14-0,48

Пенобетон

300-12000,08-0,35

Полистиролбетон

150-6000,04-0,16

Арболит (опилкобетон)

300-8500,07-0,3

Дерево

450-5500,14

Кирпич керамический

1400-21000,4 (щелевой) — 0,8(полнотелый)

Кирпич силикатный

1500-19000,5-0,7

Как видно, прямая зависимость плотности и теплопроводности касается не только пенобетона, но и любого другого материала. Если изделие преуспевает в показателе плотности, то в способности к теплосохранению оно будет существенно уступать.

Лидером в такой способности, несомненно, является полистиролбетон, однако конструкционные его возможности сильно ограничены в виде не столь высоких показателей прочности.

Методы повышения способности к теплосохранению, расчеты минимальной толщины стены

На два вышерассмотренных показателя можно оказывать воздействие. Если говорить конкретно про изделия, то плотность их и теплопроводность устанавливаются еще в процессе производства, о чем мы и поговорим ниже. Но для начала попробуем рассчитать, какая же толщина должна быть у стены, возведенной из пенобетона, при сохранении высоких характеристик к теплосохранению.

Рассчитываем толщину стены из пеноблока с учетом региона

Для расчета оптимальной толщины стены необходимо знать, так называемый, показатель сопротивления теплоотдаче. Он указан в СНиП и индивидуален для каждого отдельного региона. Усредненное значение равно 3,4, на него мы и будем опираться.

Инструкция – следующая:

  • Предположим, что использовать при кладке мы будем блок, плотностью Д500 с коэффициентом теплопроводности 0,17 Вт*мС.
  • 3,4*0,17=0,578 м. Именно столько метров должна составлять толщина стены.
  • Так как утепление обычно производится, следует отнять значение его теплопроводности применяемого для него материала, и снова перемножить значения.
  • Допустим, что теплопроводность утеплителя составляет 0,02 Вт*мС.
  • 0,17-0,02=0,15. 0,15*0,34=0,51 м. Это значит, что при планировании утепления, толщина стен может не превышать 50 см. Если утепление сделать более интенсивным, то значение можно уменьшить до укладки одного блока, шириной в 400 мм.

Коэффициенты сопротивления теплоотдаче по регионам

Методы изменения коэффициента теплопроводности будущего материала на стадии производственного цикла

Все показатели будущего материала определяются еще на стадии производства:

  • Первым этапом станет составление рецептуры, а, точнее говоря, подбор состава. При начале выпуска производится определение номинального состава, чему предшествует составление специального задания, которое содержит все требования к будущим показателям.
  • После разработки замешивается смесь и производится своеобразный тест, по завершении которого, в случае, положительного результата, состав передается на производство. Если же итоги не соответствуют планируемым, то делается корректировка.
  • Все данные действия осуществляются, разумеется, при изготовлении материала в заводских условиях.
  • При производстве изделий своими руками, все пропорции сырья измеряются вручную, руководствуясь при этом лишь рекомендациями, так как точной рецептуры изготовления пенобетонной смеси не существует.
  • Именно поэтому при самостоятельном производстве не всегда удается получить необходимые показатели теплопроводности и плотности.

Варианты составов пенобетона

Обратите внимание! При изготовлении в домашних условиях пенобетона вы сможете значительно сократить бюджет на строительство, цена на блоки однозначно снизится. Единственным минусом являются большие трудозатраты, затраты времени и высокая вероятность несоответствия изделий требованиям ГОСТ.

Что именно влияет на изменение показателей?

  1. Тип кремнеземистого компонента;
  2. Соотношение цемента в составе: чем его больше, тем выше плотность и коэффициент теплопроводности;
  3. Специализированные добавки;
  4. Метод твердения материала. При автоклавном способе, как правило, блоки получаются с гораздо лучшим сочетанием обсуждаемых нами показателей, но для домашнего изготовления он недоступен.

Видео в этой статье продемонстрирует основные методы производства пенобетона.

Варианты утепления конструкций, возведенных из пенобетона

А вот повысить способность к теплосохранению стены вполне возможно при помощи утепления конструкции. Вариантов может быть очень много, а мы кратко рассмотрим самые популярные утеплители, используемые застройщиками.

Наиболее распространенные материалы для утепления стен из пенобетона:

Базальтовая (минеральная) вата

Такая вата обладает рядом преимуществ, основные из которых сводятся к следующему:
  • Экологичность изделий;
  • Невысокая масса;
  • Легкость в использовании, отсутствие необходимости привлекать специалистов;
  • Способность к паропроницанию;
  • Долговечность;
  • Приемлемая стоимость продукции;
  • Устойчивость к биологическому воздействию.

Минусы:

  • Гигроскопичность;
  • Огнеопасность;
  • Склонность к деформации.

 

Пенопласт

Не менее распространен среди потребителей.

Также обладает рядом достоинств и недостатков.

Невысокая цена, высокая скорость монтажа, малый вес и влагоустойчивость – весомые плюсы.

К минусам же стоит отнести тот факт, что материал совершенно не дышит, а при возгорании, пенопласт способен выделять вредные вещества.

Напыление пенополиуретаном

В целом, вариант весьма неплохой. Однако при его нанесении без специализированного оборудования не обойтись. Более того, способ утепления этот — достаточно дорогостоящий.

Если говорить про теплоизоляцию, то она – на высоком уровне.

Нанесение теплых штукатурок

Самый дорогостоящий вариант. Такие специализированные смеси стоят дорого.

Плюсы заключаются в высоких эксплуатационных характеристиках, устойчивости к влаге и негорючести.

Сложности могут возникнут при нанесении. Дело в том, что состав крайне быстро схватывается, что требует высокой скорости при проведении работ. Одним словом, без определенных навыков никак не обойтись.

Кратко о колодцевой кладке

Отдельно хотелось бы сказать о методе утепления конструкций посредством метода колодцевой кладки. Она используется исключительно при облицовке здания кирпичом.

  • Кирпичная кладка при этом ведется параллельно с основной, а промежуток заполняется сыпучим утеплителем.
  • Чаще всего применяется при этом керамзит, однако могут использоваться и другие материалы, такие как: гранулы полистирола, пеноизол, вермикулит, опилки, щебень, шлак и другие.
  • Те материалы, которые не подвержены биологическому воздействию, применяются как сухая засыпка. А вот, например, опилки или иные органические материалы, используются совместно с вяжущими в виде легкого бетона с наполнителем.

Как итог, теплоизолирующая способность стены значительно возрастает. Из минусов можно выделить то, что процесс работ достаточно трудоемкий, и требует наличия определенных навыков.

Краткое описание колодцевой кладки

В заключение

Теплопроводность пенобетонных блоков – весьма значимый показатель, он отвечает за способность к теплосохранению, а значит, отчасти определяет расходы на утепление и отопление будущего здания. Для малоэтажного строительства пенобетон подходит практически идеально, ведь его прочностные характеристики вполне достаточны для возведения перегородок и стен — при сохранении пониженного коэффициента теплопроводности.

Какой должна быть толщина стен из пенобетона: мнение специалистов

Толщина стен

Пенобетон — пористый строительный материал, обладающий исключительными свойствами и повышенными физико-техническими характеристиками. Цена, малый вес блока и оптимальная толщина стен из пенобетона для возведения жилья с высокими теплоизоляционными свойствами, практически вывели его в лидеры среди аналогичных пористых строительных изделий.

Пенобетон производство

Технология производства блоков из пенобетона, инструкция:

  • подготовка раствора, состоящего из цемента и кварцевого песка;
  • подготовка пенообразователя;
  • пенообразователь вводим в раствор, добавляем воду и интенсивно перемешиваем;
  • готовую смесь пенобетона заливаем в формы.

Содержание статьи

Как выбрать пенобетонные блоки

Толщина стен пеноблочных

Какая должна быть в идеале толщина стены? Однозначно ответить на этот вопрос может только представитель проектной организации, который будет проектировать ваше жилище.

Если вы приняли решение сооружать жилье своими руками, не вдаваясь в научные расчеты, внимательно посмотрите видео в этой статье и проанализируйте, представленные ниже, характеристики пенобетонных блоков.

Блоки из пенобетона по своему назначению делятся на три основных категории:

  • теплоизоляционные, служащие исключительно в целях изоляции;
  • конструкционно – теплоизоляционные;
  • конструкционные.
НазначениеМарка по плотностиРазмерВес блока, кг
ТеплоизоляционныеD300200 х 300 х 60011,7
D40015,6
D50019,4
Конструкционно –теплоизоляционныеD600200 х 300 х 60023,3
D70027,2
D80031,7
D90035,6
КонструкционныеD1000200 х 300 х 60039,6
D110043,6
D120047,5

Теплоизоляционные блоки

Блоки из пенобетона марки D300 – D500 и плотностью 300 – 500 кг/м³ имеют высокое содержание воздушных ячеек (пор) в структуре материала. Благодаря такому строению обладают низкой теплопроводностью. Поэтому их используют только как дополнительный изоляционный материал в многослойных строительных конструкциях. (фото)

Теплоизоляционные блоки

Конструкционно-теплоизоляционные блоки

Пенобетон — толщина блока 300 – 400 мм и марка D600 – D900 активно применяется для возведения несущих ограждающих конструкций. Обладает высокими теплоизоляционными свойствами.

На территориях с мягким климатом допустимо возводить здания с толщиной наружных стен 300 мм. Для районов с холодным климатом рекомендуемая толщина пенобетона для внешних стен равна 600 мм.

Пенобетон кладка

Конструкционные блоки

Пеноблоки марки D900 – D1200, средней плотности 900 – 1200 кг/м³, называются конструкционными. Это блоки особой прочности с высоким пределом сжатия и предназначены для многоэтажного строительства.

Используется для устройства фундаментов и несущих стен. Дополнительно для увеличения прочности блок может армироваться специальным синтетическим волокном (фибра).

Пеноблоки

Стандартный размер для конструкционного блока из пенобетона — 60.30.20 см. Этот размер предназначен для возведения внутренних несущих стен, 60.40.20 см — для устройства наружных стен здания.

Расчет количества пеноблоков

Перегородки из пенобетонных блоков

пенобетонная перегородка

Пенобетонные межкомнатные перегородки применяют для разграничения площади помещений на комнаты согласно их функциональному предназначению. Толщина пенобетонной перегородки варьируется в зависимости от планируемой площади помещения и предпочтений заказчика.

Внутренние стены из пенобетона обеспечивают хорошую звукоизоляцию и имеют меньший вес, чем аналогичные перегородки из кирпича. Толщина блока из пенобетона для межкомнатных стен определяется ГОСТом и обычно равна 5, 7,5 или 10 см.

Использование пенобетонных блоков для перегородок имеет массу преимуществ:

  1. Суммарный незначительный вес пеноблоков, приводит к минимальным нагрузкам на фундамент здания.
  2. Малый вес и геометрически правильная форма блоков дает возможность производить кладку стен в кратчайшие сроки и с минимальными трудозатратами.
  3. Благодаря своему пористому строению межкомнатные стены обладают высокой звукоизоляцией и хорошими теплоизоляционными свойствами.
  4. Перегородки из пенобетона не горят, а значит создают дополнительную пожарную безопасность зданию.
  5. Межкомнатные стены на основе пенобетонных блоков намного дешевле, чем аналогичные модели из кирпича или сборных деревянных конструкций.

Пенобетон перегородки

Блоки из пенобетона для межкомнатных стен получили широкое признание среди будущих домовладельцем. Однако не настолько как газобетонные или гипсовые.

Причина в том, что производством блоков для перегородок занимаются не только специализированные предприятия, а и мелкие разрозненные частные фирмы. Контроль качества у таких предприятий не на высоком уровне.

Недостатки пеноблока

В результате получаем изделия плохой геометрической формы. Этот недостаток и влияет на их признание и широкое распространение.

Подсказки: Для того чтобы проверить и сравнить геометрию стенового блока, необходимо найти ровную по уровню поверхность и установить друг на друга два образца. Тщательно со всех сторон исследовать размеры и плотность прилегания сторон пеноблоков. Это впоследствии сократит расход клея и штукатурного раствора в период проведения отделочных работ.

Преимущества пенобетона

В заключение: правильно подобранная толщина стены из пенобетона значительно сэкономит затраты на утепление наружных стен дома, а профессионально выбранная плотность пеноблока обеспечит идеальную звукоизоляцию и создаст благоприятный микроклимат в помещениях.

Теплопроводность газобетона: коэффициент теплопроводности

Газобетон, теплопроводность

Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность. Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала? И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности?

Содержание статьи

Краткая характеристика газобетона

Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования. Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются.

Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Газобетон

Обзор основных свойств и качеств

Воспользуемся таблицей.

Основные характеристики газобетона:

Наименование характеристикиСреднее ее значение
Морозостойкость35-150
Марка прочностиДля неавтоклава – от В1,5, в соответствии с ГОСТ21520-89; для автоклавного газобетона, в среднем — В3,5
УсадкаОт 0,3 мм/м2
Минимальная рекомендуемая толщина стеныОт 0,4 м
ТеплопроводностьОт 0,09
Экологичность2
ПожароопасностьНе горит

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже.

Классификация и сфера применения

Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

В соответствии со способом твердения, газобетонный блок может быть:

  1. Автоклавным;
  2. Неавтоклавным.

Автоклавный и неавтоклавный газобетон

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании – автоклаве, при воздействии высокой температуры и давления. Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже. Сравним показатели данных видов газобетона при помощи таблицы.

Сравнение автоклавного и неавтоклавного газобетона:

Наименование показателяЗначение для автоклавного газобетонаЗначение для неавтоклавного газобетона
Прочность, маркаВ2,5-5В1,5-2,5
Морозостойкость35-15015-35
Паропроницаемость0,20,18
Теплопроводность эксплуатационная0,096-0,1550,17-0,25
ОгнестойкостьНе горитНе горит
Рекомендуемая минимальная толщина стены, метрыОт 0,4От 0,65
ДолговечностьДо 200 летДо 50 лет

Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Характеристика газобетона разной плотности

Также газобетон разделяют в зависимости от плотности.

В соответствии с этим, материал может быть:

  1. Теплоизоляционным. Такие изделия отличаются низкой плотность (до 400) и теплопроводностью. Используются они в качестве материала для утепления, так как никаких существенных нагрузок блок выдержать не способен.
  2. Конструкционно-теплоизоляционный газобетон обладает более высокой плотностью. Числовой показатель варьируется от 400 до 800. Однако коэффициент теплопроводности газобетонных блоков также вырастает. Используется материал при возведении стен и перегородок.
  3. Конструкционный газобетон – наиболее прочный из всех. Плотность его равна 900-1200. Может выдержать значительные нагрузки, однако при этом, стены требуют дополнительного утепления, так как способность к сохранению температуры у таких блоков достаточно низкая.

Отличия газобетона разной плотности

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко.

В зависимости от типа вяжущего, газобетон бывает:

  • На цементном вяжущем;
  • На известковом;
  • На шлаковом;
  • На зольном;
  • На смешанном.

Это указывает на то, что содержание основного компонента варьируется в пределах от 15 до 50%.

В соответствии с типом кремнеземистого компонента:

  1. На песке;
  2. На золе;
  3. На иных вторичных продуктах промышленности.

Также хотелось бы отметить классификацию, основанную на геометрии блока.

Газобетон может быть:

  1. Первой категории точности;
  2. Второй категории точности;
  3. Третьей категории точности.

Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Важно! Блоки первой категории – самые ровные, отклонения по размеру не должны превышать 1,5 мм. Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние!

Вторая категория имеет большие отклонения: до 2-х мм – по размеру, до 3-х – по диагонали.

Блоки третьей категории обычно используются при возведении хозяйственных построек. Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения.

Обратите внимание! Блоки различной категории отличаются между собой только геометрическими отклонениями. Различий в технических характеристиках существенных нет. Теплопроводность, прочность, морозостойкость и иные показатели будут идентичными. Отличаться они могут только ввиду сравнения изделий различных производителей.

Понятие теплопроводности и ее значение

Теплопроводность – это способность материала к сохранению температуры. Например, если коэффициент ее высок, то в холодное время года, затраты на отопление помещения значительно возрастут, так как тепло будет быстро выходить наружу — и здание, соответственно, будет быстро остывать.

Давайте разберемся, насколько практичным является использование газобетона в качестве материала для утепления либо возведения стен в данном случае.

Что такое теплопроводность

Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей

Коэффициент теплопроводности газобетона продиктован ГОСТ 25485-89. Бетоны ячеистые. Технические условия. Как уже упоминалось, данный показатель напрямую зависит от плотности изделий и, более того, от типа кремнеземистого компонента. Рассмотрим таблицу.

Зависимость теплопроводности от плотности газобетона и типа кремнеземистого компонента:

Вид газобетонаМарка прочностиКоэффициент теплопроводности газобетона, изготовленного на золеКоэффициент теплопроводности газобетона, изготовленного на песке
Теплоизоляционный3000,080,08
4000,090,1
Конструкционно-теплоизоляционный5000,10,12
6000,130,14
7000,150,15
8000,180,21
9000,200,24
Конструкционный10000,230,29
11000,260,34
12000,290,38

Вывод напрашивается сам собой: чем больше плотность, тем выше и показатель теплопроводности.

График зависимости теплопроводности от плотности

  • В соответствии с ГОСТ, производителем должен быть учтен тот факт, что теплопроводность изделий не должна превышать вышеуказанных показаний более чем на 20%.
  • Также в таблице видно, что газобетон, изготовленный на золе, более способен к сохранению температуры.
  • Возьмем, к примеру, блоки газозолобетонные d=600: коэффициент теплопроводности у них равен значению в 0,13. А у блоков той же плотности, но изготовленных на песке, данный показатель — на 0,1 выше
  • Немаловажным фактом является то, что теплопроводность блока значительно ухудшается при его увлажненности. А так как газобетон впитывает влагу достаточно сильно, стоит обратить внимания на подобные изменения.
  • Например, коэффициент теплопроводности газобетона d500 равен 0,12, но это – при стандартных условиях измерения. При эксплуатационной влажности, этот показатель увеличивается минимум на 0,2.

Теплопроводность газобетона d500

То есть, чем выше влажность, тем выше и коэффициент теплопроводности. В соответствии с ГОСТ, отпускная влажность газобетонных изделий не должна превышать показателя в 25%, при производстве изделий на песке, и 30% — на основе золы и иных вторичных продуктов промышленности.

Отдельно стоит обратить внимание на такой материал как монолитный газобетон. Он также может быть разной плотности, и обладать различным коэффициентом теплопроводности. Во многом это зависит от марки используемого при изготовлении цемента, пористости и соотношения компонентов.

Его активно используют при:

  • Устройстве стяжки. Монолитные полы из газобетона прочны, материал прост в обращении. Нередко с его помощью производят подготовку основания под теплый пол.
  • Для изоляции кровли. При этом применяют материал меньшей плотности.

Это, разумеется, не все возможные сферы применения материала, их существует достаточно большое количество. Фактом остается то, что популярность газобетона растет с каждым годом все больше, именно благодаря соотношениям плотности и теплопроводности, высоким показателям морозостойкости и других эксплуатационных характеристик.

Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами

А теперь давайте сравним показатели теплопроводности газобетона с другими стеновыми изделиями, а также проанализируем соотношение плотности к данной характеристике. Достоин ли газобетон находиться в лидерах?

Сравнение физико-технических показателей газобетона и других стеновых материалов:

Наименование материалаПлотность кг/м3Коэффициент теплопроводности
Газобетон600-8000,18-0,28
Силикатный кирпич1700-19500,85-1,16
Арболит400-8500,08-0,18
Шлакобетон900-14000,2-0,58
Пенобетон400-12000,14-0,39
Керамзитобетон900-12000,5-0,7
Кирпич пустотелый1500-19000,56-0,95

Фактически выходит, если сравнивать вышеперечисленные материалы и газобетон, теплопроводность его несколько превышает лишь аналогичный показатель у арболита и пенобетона. Остальные стеновые материалы остаются далеко позади.

Сравнение теплопроводности материалов

 

Сравнение газобетона

Как уже говорилось, газобетон низкой плотности используют в качестве материала для утеплителя. Давайте сравним теперь обоснованность его применения.

Теплопроводность материалов, предназначенных для утепления, в сравнении с теплоизоляционным газобетоном:

Наименование материалаКоэффициент теплопроводности, м2*С/Вт
Газобетон теплоизоляционный, Д300От 0,08
Эковата0,014
Изовер0,044
Пенопласт0,037
Керамзит0,16
Стекловата0,033-0,05
Минеральная вата0,045-0,07

Теплопроводность строительных материалов

Даже в качестве теплоизоляционного материала, газобетон может быть достойным конкурентом.

Часто выбирая утеплитель, застройщики задаются вопросом: керамзит или газобетон, что лучше? Ответить однозначно достаточно сложно. В первую очередь, следует обратить внимание на приоритеты в показателях. Оба материала – легкие, недорогие и способны сохранять тепло.

Однако, если учитывать данные, указанные в таблице, то теплоизоляционный газобетон все же выигрывает в последнем показателе. А выбор, остается за вами.

Расчет оптимальной толщины стены

Рекомендуемая минимальная толщина стены из газобетона, как мы уже выяснили, составляет 400 мм. Однако для разных регионов, этот показатель может значительно отличаться. В местах, где температура воздуха более низкая, стена должна быть значительно толще, при сохранении оптимальной температуры.

Давайте разберемся, как же правильно посчитать нужную толщину стены, с учетом всех необходимых факторов, в том числе требований СНиП 23-02-2003 Тепловая защита зданий, СП 23-101-2004 Проектирование тепловой защиты зданий.

Для начала рассмотрим, каким будет показатель теплопроводности, в соответствии со СНиП, при условиях изготовления с использованием различного кремнеземистого компонента и кладки готовых изделий на различные растворы.

Расчетные коэффициенты теплопроводности в условиях эксплуатации при возведении стен с использованием раствора и клея и соответствующие условия эксплуатации А-В:

Вид блокаМарка плотностиКоэффициент теплопроводности, при условии укладки на известково- песчаный раствор (условия эксплуатации А-В).Коэффициент теплопроводности, при условии укладки на цементно-песчаный раствор

(условия эксплуатации А-В).

Коэффициент теплопроводности, при условии укладки изделий на клей

(условия эксплуатации А-В).

Газобетон, изготовленный из кварцевого пескаД5000,25-0,30,24-0,280,18-0,23
Д6000,27-0,320,26-0,310,22-0,26
Д7000,35-0,40,34-0,390,27-0,31
ГазозолобетонД5000,28-0,330,27-0,320,19-0,25
Д6000,31-0,370,3-0,360,25-0,31
Д7000,39-0,450,38-0,440,3-0,36

Далее, для проведения расчетов необходимо определить, к какой зоне влажности относится ваш регион. Для этого можно воспользоваться картой зон влажности и следующей таблицей:

Влажностный режим регионов:

РежимВлажность воздуха при температуре до 12 градусовВлажность воздуха при температуре от 12 до 24 градусовВлажность воздуха при температуре более 24 градусов
Влажный – 1Более 75От 60 до 75От 50 до 60
Нормальный -2От 60 до 75От 50 до 60От 40 до 50
Сухой -3Менее 60Менее 50Менее 40

Теперь следует заглянуть в СНиП 23-02-2003 и определить, к каким условиям эксплуатации ограждающих конструкций относится регион в зависимости от влажности.

Карта зон влажности, фото

Эксплуатационные условия конструкций А, Б в зависимости от влажностного режима в регионе:

Режим влажностиУсловия эксплуатации во влажной зонеУсловия эксплуатации в нормальной зонеУсловия эксплуатации в сухой зоне
Влажный – 1БББ
Нормальный – 2ББА
Сухой — 3БАА

Теперь стоит вернуться в таблице 6, в которой мы сможем найти нужный для себя показатель.

  • Например, предположим, что наш регион – Смоленск. Его территория относится к зоне нормальной влажности – 2, влажность в помещении – тоже нормальная, значит, в этом случае, для региона характерны условия В.
  • Теперь переходим к расчетам. Нам потребуется значение нормируемого сопротивления теплоотдаче. Для Москвы это – 3,29.
  • Возводить мы будет стену из блоков плотностью Д500, укладку производить – на клей. Находим в таблице 6 необходимое значение. В данном случае оно равно – 0,23.
  • Теперь определяем толщину стены, для чего перемножаем коэффициент теплопроводности и показатель сопротивления теплоотдаче: 3.29*0.23=0,7567 метра.
  • То есть, для того, чтобы не нарушить нормы СНиП, толщина стены, при вышеописанных условиях, должна составлять 0,76 метра!

Так почему же все производители в один голос заявляют, что толщина стены может быть от 400 мм, а на практике выходит по-другому? Все просто!

Во-первых, теплопроводность газоблока в условиях эксплуатации – повышается, так как изменяется влажность, во-вторых, изготовителями, при подсчетах показателей для рекламы продукции, не учитываются мостики холода и иные определяющие факторы. Теоретически, толщина стены может быть и тоньше, но, чтобы сохранить нужное значение теплопроводности, необходимо будет компенсировать разницу при утеплении конструкции.

Газобетонные блоки теплопроводность: вариант утепления, схема

Видео в этой статье расскажет подробнее о методах утепления газобетона, и сохранения оптимального показателя качества теплопроводности

Обзор основных достоинств и недостатков строений, возведенных из газобетона

Итак, мы выяснили, что коэффициент теплопроводности газобетона достаточно хорош, относительно других материалов, предназначенных, в первую очередь, для возведения стен. Однако это не может являться единственным аргументом при выборе изделий.

Давайте кратко рассмотрим, какими же еще сильными сторонами обладают газоблоки:

  1. Изделия — легкие, что значительно сократит нагрузку на фундамент;
  2. Как уже упоминалось выше, материал прост в обращении, он легко пилится, режется, шлифуется;
  3. Состав газоблока – немаловажный аспект. Он не содержит ядовитых и вредных для окружающих веществ, а, значит, является экологически чистым;
  4. Газобетон не горит и не поддерживает огня. При возгорании может в течение нескольких часов находиться под воздействием высокой температуры;
  5. Высокие показатели морозостойкости. Изделия могут выдержать до 150 циклов размораживания и оттаивания;
  6. Паропроницаемость обеспечит максимально комфортный микроклимат;
  7. Звукоизоляционные характеристики – также достаточно неплохие. Стены из газобетона смогут оградить пребывающих в помещении от посторонних шумов извне;
  8. Доступность и распространенность материала среди производителей. Это – тоже значительный плюс. Практически в любом регионе можно найти изготовителя или дилера, находящегося по близости. Это поможет сэкономить на доставке;
  9. Вариативность выбора размеров;
  10. Еще одно весомое преимущество – возможность самостоятельного изготовления изделий. Для желающих сэкономить или просто попробовать свои силы – отличный шанс;

Основными недостатками являются:

  1. Высокое водопоглощение материала. В этом случае, пористость является отрицательной стороной в особенности, при отрицательных температурах воздуха. В это время, влага может кристаллизироваться и разрушительно воздействовать на структуру блока.
  2. Хрупкость изделий. Это достаточно заметно при проведении работ и транспортировке.
  3. Усадка здания имеет место быть достаточно часто и, в следствие этого, а также некоторых других факторов, могут появиться трещины.
  4. Необходимость поиска и приобретения специального крепежа, а при желании закрепить особо тяжелых предметы, необходимость планирования и укрепления узлов фиксации.

Метод испытания теплопроводности изделий

Метод контроля теплопроводности осуществляется в соответствии с ГОСТ 7076, а отбор проб – в соответствии с ГОСТ 10180. Документы содержат всю информацию о порядке отбора проб, их испытаний и протоколировании результатов.

Суть метода заключается в следующем: создается стационарный тепловой поток, который проходит через образец выбранной толщины. Направление его – перпендикулярно наибольшим граням образца. В результате производят измерение плотности этого потока тепла, а также температуру лицевых граней образца и его толщину.

Необходимое количество образцов, подлежащих испытанию, должно быть указано в сертификате на материал. Если же такое указание отсутствует, испытания проводятся на образцах в количестве пяти штук.

Прибор для измерения теплопроводности твердых тел

Краткая инструкция о порядке проведения испытания выглядит так:

  • Производят подготовку образцов и необходимого оборудования, согласно технической документации;
  • Образец помещают в прибор, предварительно градуированный;
  • Каждые 300 секунд производят измерения сигналов тепломера и датчика температуры;
  • После установления стационарного теплового потока, толщина образца подлежит измерению;
  • Заключительным этапом является определение массы образца.

Основные итоги

От показателя теплопроводности стенового материала зависят расходы на утепление помещения при строительстве, а в будущем — и величина расходов на отопление. Ведь данная характеристика отвечает за способность здания к сохранению температуры.

Газобетон обладает завидным числовым показателем в сравнении с другими материалами для стен — но, все же, совсем без утепления все равно не обойтись. Теплопроводность зависит от иных показателей качеств, таких, например, как плотность, или влажность. А это значит, что при возведении здания, данный факт должен быть обязательно учтен.

Помимо вышеуказанного, газоблок наделен большим количеством сильных сторон, поэтому если ваш выбор пал на него, то вы не прогадали. Материал позволит возвести практичное, долговечное строение — а теплопроводность газобетонных блоков при этом, является крайне важной характеристикой.

оптимальная и рекомендуемая, какой должна быть, видео-инструкция по монтажу своими руками, фото

Строительство загородного дома всегда несет за собой множество растрат, усилий и расчетов, которые, однако, не в силах выполнить все желающие. Ведь мало хотеть построить дом из пенобетонных материалов, необходимо знать особенности и тонкости рабочего процесса. В данной статье мы рассмотрим, какая толщина стен из пеноблоков требуется для жилого дома, а также возведем ее самостоятельно, по всем правилам и стандартам.

Обычно пенобетон в «соло» не используется, практически всегда его отделывают кирпичом

Характеристики материала

Прежде чем определиться, какой толщины должна быть стена из пеноблоков, давайте ознакомимся с преимуществами данного материала:

Полезная таблица сравнения характеристик современных строительных материалов

  • Высокая прочность на сжатие – допустимые показатели от 3,5 до 5 Мпа. Все это говорит о том, что из пеноблоков можно строить двух, а то и трехэтажные дома.
  • При столь легком весе, пенобетонный блок имеет низкую плотность (в зависимости от качества материала – от 400 до 1600 кг/м), в 2-3 раза ниже, чем у керамзита.
  • Пеноблок может сравниться с древесиной своей теплопроводностью, а в сравнении с керамическим кирпичом, он даже имеет преимущество. Стена из глиняных блоков толщиной в 60 см сохраняет тепло так же, как и пенобетонная кладка в 200 мм.
  • Стоит отметить и звукоизоляционные свойства данного материала, вам не потребуется дополнительная защита от шума, если блоки будут качественно уложены.
  • Ну и, конечно же, цена пеноблоков не сравнится ни с чем. Данное изделие, даже с учетом транспортных услуг, обойдется вам дешевле всех других строительных материалов.

Напоследок можно указать на доступность кладки материала, то есть, вы своими руками, без специально подготовки, сможете возвести дом из пенобетонных блоков.

Изделия отличаются между собой не только плотностью и габаритами, но и способом фиксации

Примечание! Не забывайте, что слишком заниженная стоимость пеноблоков не является знаком качества, скорее всего, это второсортные продукты, которые были изготовлены из отходов качественного сырья. Поэтому старайтесь экономить с умом.

По внешнему виду материала можно сказать о его качестве

Статьи по теме:

Толщина стен – вопрос с подвохом

В поисках того, какую выбрать толщину для стены из пеноблоков, вы можете наткнуться на множество различных доводов и суждений, большинство из которых окажется недостоверной информацией.

Чтобы обезопасить себя и найти верное решение, мы опишем несколько особенностей, от которых следует отталкиваться:

  • Во-первых, важно понять, насколько низко опускается в зимнее время температура. В районах, где зима очень суровая, безусловно, требуются утолщенные стены с дополнительной теплоизоляцией.
  • Во-вторых, определиться с утеплителем – будете ли вы его монтировать или обойдетесь обычной штукатуркой. К примеру, для домов, где толщина стены из пеноблока 300 мм, лучше добавить теплоизоляционный материал толщиной 50-100 мм.
  • В-третьих, утеплитель действует не только как материал, который сдерживает тепло, но он также препятствует воздействию ультрафиолетовых лучей на пеноблок.

К сведению! На выбор пенобетонных изделий должна повлиять и их плотность, которая различается, чем выше плотность, тем дороже материал.

Определяем толщину

Теперь давайте сделаем вывод из вышесказанного, рекомендуемая толщина наружных стен из пеноблоков для районов с умеренной зимой – 300 мм с плотностью D600 и слоем теплоизоляции.

  • Это, так сказать, и есть золотая середина, которая подходит практически для всех регионов России. Дополнительная теплоизоляция снаружи дома позволяет переживать зиму, не ощущая холода в жилом помещении.
  • Что касается прочности, то даже если дом планируется двухэтажный, то максимальная нагрузка на стены первого этажа не превысит 20 тонн (вместе с кровлей, плитами перекрытия и обстановкой). А из технических характеристик нам известно, что каждые 100 мм пеноблока способны выдержать нагрузку до 10 тонн.

Важно! Единственное, на что стоит обратить внимание – прочность и устойчивость к физическим воздействиям. 300 мм это достаточно мало, такую стену легко пробить кувалдой, а вот 400 мм блоки уже более плотные и прочные.

С другой стороны, можно наглядно на примере выяснить какая толщина стены из пеноблоков должна быть.

Расчеты по теплопроводности

Вы должны знать, что сопротивление внешней стены теплопередачи (со всеми отделочными материалами) должно превышать 3,5 градуса на м2/Вт.

Чтобы определить толщину, давайте на основе различных плотностей пенобетона рассмотрим этот процесс более внимательно:

  • Из технических характеристик можно узнать, что блоки D600 и D800 имеют коэффициенты 0,14 и 0,21 град*м2/Вт соответственно.
  • В качестве отделочных материалов используется облицовочный кирпич (0,56 град*м2/Вт) и декоративная штукатурка (0,58 град*м2/Вт).

Приступаем к расчету:

  • Для начала определимся с толщиной кирпичной кладки и штукатурки, обычно (для фасадов без теплоизоляционных материалов) кирпич укладывается в два ряда, то есть – 120 мм.
  • Теперь переведем это в метры и разделим на коэффициент теплопроводности облицовочного материала, получается сопротивление равное 0,21.
  • То же самое проделываем со штукатуркой и в результате сопротивление равно 0,03.

Теперь осталось подставить все наши числа в простую формулу:

  • Пенобетон с плотностью 600 = 3,5 (суммарное сопротивление теплопередачи) – 0,21 (кирпич) – 0,03 (штукатурка) и все это умножается на 0,14 (коэффициент пеноблока). В результате получаем около 450 мм (не забудьте перевести из метров). Именно такой толщины должна быть стена с вышеописанными материалами.
  • Пенобетон с плотностью 800 – (3,5 – 0,21 – 0,03) * 0,21 = около 680 мм.

Как видите, во втором случае потребуется стена более толстая, значит, и расходов будет больше. С другой стороны, добавьте сюда пенополистирол (самый обычный утеплитель) и толщина фасада значительно сократиться.

Важно! Оптимальная толщина стен дома из шлакоблока высчитывается аналогичным образом, с одним но – необходимо учитывать и влагозащитный материал, так как без него данный материал потеряют прочность. В среднем стены сооружений из шлакоблока, в районах с возможными похолоданиями до – 30 градусов, возводят толщиной в 70-80 см.

Шлакоблоки не отличаются приятным внешним видом, но они обладают хорошими теплоизоляционными свойствами

Строительный процесс – возводим стены

А теперь, как и обещали, инструкция возведения наружных стен с учетом всех факторов, воздействующих на материал:

  • Для начала необходимо подготовить фундамент к работам: очистить от пыли и грязи, выровнять, если существуют неровности.
  • После, подсчитать необходимое количество материалов: пеноблоков и клеевого раствора. Чтобы вам было проще ориентироваться, в одном кубическом метре около 30 блоков размерами 200х300х600 мм (мы их выбрали, чтобы толщина стен была 300 мм). Расчет клея можно брать примерным – около 30 кг на 1 м3 стены, поэтому главное – узнать общую площадь возводимых стен.

Примечание! Определиться с количеством материалов лучше на стадии проектирования, чтобы избежать лишних затрат, учесть все моменты, вплоть до оконных проемов и внутренних перегородок.

Над проемами обязательно устанавливаются крупногабаритные железобетонные блоки

  • Когда все материалы и инструменты на месте, можно начинать заготавливать раствор, если вы, конечно, не купили готовую смесь.
  • Первоначально клей наносится на поверхность пеноблока, который кладется на фундамент или плиту перекрытия.
  • Перед тем, как ляжет соседний блок, хорошенько клеем промазывается торец, чтобы между изделиями не было пустотных щелей.

Используйте зубчатый шпатель, как показано на фото

  • Чтобы устранить лишний клей из-под пенобетона, следует по нему постучать киянкой.
  • Второй ряд выкладывается со сдвигом материалов, чтобы вертикальные стыки не совпадали, для этого необходимо распилить один блок пополам и начать укладку с половинки.

Есть блоки, у которых на горизонтальной поверхности есть выемка для раствора – повышается сцепление, либо такую выему можно сделать самому

Так как пенобетонные изделия легко обрабатываются, никаких проблем с проделыванием отверстий для оконных и дверных проемов у вас не должно возникнуть.

Теперь осталось отделать и утеплить фасад пеноблочного дома:

  • Для отделки кирпичом следует в пенобетонной стене, между блоками, закрепить несколько прутьев тонкой арматуры, это необходимо для того, чтобы соединить внутреннюю стену с кирпичной кладкой. Однако прежде требуется при помощи тарельчатых гвоздей установить пенополистирольные плиты.
  • Если же вы используете только штукатурку, то первоначально, поверх готовой стены, следует закрепить армирующую сетку. Потом необходимо нанести толстый слой теплоизоляционной штукатурки, чтобы она скрыла под собой сетку. Финишный слой – декоративная отделка, защищающая внутренний слой от ультрафиолета и влажности.

Первый слой штукатурки необязательно выравнивать в ноль

Особенности работы с пенобетоном

Помимо всего вышеописанного, вам следует уяснить несколько важных моментов, касающихся непосредственно пеноблоков:

  • Расчет толщины стены следует осуществлять по правилам в том случае, если вы уверены в качестве строительного материала. Не забывайте, что плотность – основной критерий, по которому отбирается продукт.
  • Для пеноблоков лучше использовать специальные клеевые растворы, нежели обычную цементно-песчаную смесь. Если вы не уверены, что сможете соблюсти правильные пропорции, лучше приобретите готовую продукцию, которую можно использовать непосредственно после открывания упаковки.
  • Хотелось бы также уточнить, что пенобетон не обладает повышенной устойчивостью к воде, поэтому необходимо использовать дополнительные гидрофобные материалы. Небольшое вложение в защиту стен и вы продлите их эксплуатационный срок на несколько лет.

Вот так может выглядеть пеноблок, который подвергался воздействию воды

  • Для межкомнатных перегородок достаточно использовать пеноблоки толщиной в 200 мм, а некоторые домостроители вообще возводят внутренние стены толщиной в 100 мм. На самом деле этого достаточно, но не забывайте, что чем тоньше материал, тем ниже звукоизоляция. Поэтому с такими перегородками обычно устанавливают шумоизоляционные пленки.

Толщина в 100 мм практична в небольших домах, где каждый метр жилой площади на вес золота

Вывод

Как видите, факторов влияющих на то, какой будет толщина стены из шлакоблока и на определение данного параметра – не так уж и много. В основном это погодные условия и, конечно, наличие второго этажа или мансардного помещения.

В любом случае, необходимо подстраиваться именно под то, что у вас есть, ориентируясь при этом на свои финансовые возможности. Стараясь угадать толщину несущих стен, определитесь с ней заранее, если используете в качестве основания ленточный фундамент.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Теплопроводность пенобетона различной плотности

Приведены таблицы значений теплопроводности пенобетона и других ячеистых строительных материалов различной плотности. Коэффициент теплопроводности рассмотренных пеноматериалов указан при температуре 20…30°С.

Кроме того, в таблицах дано среднее количество ячеек на 1 см2 поверхности материала и средний диаметр ячеек. Плотность пенобетона в таблице находится в пределах от 282 до 927 кг/м3. По данным таблицы видно, что плотность пенобетона меньше плотности воды — этот пеноматериал будет плавать на ее поверхности.

Теплопроводность пенобетона зависит от его плотности и среднего диаметра ячеек и может составлять от 0,069 до 0,234 Вт/(м·град). Снижение плотности пенобетона и уменьшение размера ячеек приводит к падению его теплопроводности.

Следует отметить параметры, при которых пенобетон имеет наименьшее значение коэффициента теплопроводности. Из рассмотренных в таблице типов пенобетона минимальной теплопроводностью обладает пенобетон с плотностью 293 кг/м3 и средним диаметром ячеек 0,63 мм. Теплопроводность такого пенобетона составляет 0,069 Вт/(м·град).

Теплопроводность пенобетона в зависимости от плотности
Плотность пенобетона, кг/м3Среднее количество ячеек на 1 см2 поверхностиСредний диаметр ячеек, ммТеплопроводность пенобетона, Вт/(м·град)
282531,280,087
2932210,630,069
314231,860,101
366880,970,098
3682010,640,088
370601,170,102
3731610,710,088
4151860,660,096
4151230,810,102
420421,380,112
5392020,610,11
550940,890,14
5591450,710,127
5632840,510,129
6113000,490,14
620221,790,158
633701,070,154
9163130,410,217
927580,960,234

Во второй таблице рассмотрена теплопроводность пенистых строительных материалов таких, как пеногипс, пеноангидрид и пенодиатомовый кирпич.

Наименьшей теплопроводностью и плотностью из представленных материалов обладает пенодиатомовый кирпич. Коэффициент теплопроводности этого пеноматериала составляет 0,095…0,108 Вт/(м·град).

Пеногипс и пеноангидрид являются более плотными и теплопроводными. Их теплопроводность находится в диапазоне от 0,142…0,204 Вт/(м·град).

Теплопроводность ячеистых пеноматериалов различной плотности
Плотность, кг/м3Среднее количество ячеек на 1 см2 поверхностиСредний диаметр ячеек, ммКоэффициент теплопроводности, Вт/(м·град)
Пеногипс
623221,610,154
640441,130,15
6411800,560,142
715251,410,178
7401100,680,169
846420,950,204
8501750,460,199
Пенодиатомовый кирпич
41216000,220,095
41514440,230,097
4306250,340,106
4605290,370,106
4656760,330,106
4754840,380,108
Пеноангидрид
7211370,670,171
725351,330,177

Источник:
Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967.

Эффективная теплопроводность пенополиуретана с открытыми порами на основе теории фракталов

На основе теории фракталов проиллюстрирована геометрическая структура внутри пенополиуретана с открытыми порами, который широко используется в качестве адиабатического материала. Создана упрощенная клеточная фрактальная модель. В модели описана методика расчета эквивалентной теплопроводности пористой пены и вычислена фрактальная размерность. Выводятся математические формулы для фрактальной эквивалентной теплопроводности в сочетании с газом и твердой фазой, для эквивалентной теплопроводности теплового излучения и для полной теплопроводности.Однако общий эффективный тепловой поток складывается из теплопроводности твердой фазы и газа в порах, излучения и конвекции между газом и твердой фазой. Получено фрактальное математическое уравнение эффективной теплопроводности с учетом фрактальной размерности и вакансионной пористости в теле ячейки. Результаты расчетов хорошо согласуются с экспериментальными данными, разница составляет менее 5%. Обобщены основные влияющие факторы. Исследования полезны для улучшения адиабатических характеристик пеноматериалов и разработки новых материалов.

1. Введение

Благодаря выдающимся адиабатическим характеристикам пенополиуретан с открытыми порами, с малой плотностью и низкой теплопроводностью (0,018 ~ 0,032200 Вт / (м · К)), применяется в различных областях, таких как строительство, холодильные камеры хранения продуктов. , и рефрижераторные перевозки грузов с целью сохранения тепла. Неправильная геометрическая конструкция пенополиуретана с открытыми ячейками делает его нестандартным по физическим свойствам. И это затрудняет теоретические исследования, особенно в отношении точных тепловых характеристик.На самом деле, теплопроводность адиабатических материалов можно измерить с помощью пластинчатого устройства с тепловой защитой, но это неудобно для научных исследований и разработки пенополиуретана. Анализ и оценка эффективной теплопроводности пористой среды в течение долгого времени представляли собой масштабный исследовательский проект для теплофизической инженерии и гилологии [1]. Хотя в качестве исследовательского проекта для расчета теплопроводности используется пенопластовый материал пористой среды, он всегда считается соединительной виртуальной средой в крупномасштабном пространстве, то есть «средним объемом» в геометрическом распределении.Уитакер [2, 3] и Уитакер и Чоу [4] использовали метод виртуального «среднего объема» для описания процедуры тепломассопереноса внутри пористой среды. Считалось, что пористая среда объединена с твердофазным материалом, жидкостью и газом. Газовая фаза содержит сухой воздух и пар. Предположили, что все фазы в пористой среде представляют собой тепловые балансы, а размеры пор соответствуют «среднему объему» — дюжине переменных, входящих в математическую формулу. Yu et al.[5, 6] также экспериментально исследовали их физическую модель связи и диффузии и вывели соответствующую математическую формулу.

В настоящее время существует два основных метода оценки теплопроводности материалов пористых сред. Во-первых, теплопроводность описывается как сложные математические функции пропорцией пор и параметрами микроструктуры. Лагард [7] вывел эквивалентную эффективную функцию теплопроводности для насыщенных пористых материалов.Эквивалентная эффективная теплопроводность получается из где — теплопроводность жидкой фазы (), а — теплопроводность твердой фазы ().

Здесь было сделано предположение, что тепловые потоки через флюид в поре и через твердую фазу пористого тела индивидуальны и происходят одновременно. Однако передача тепла также происходила между жидкой фазой и твердой фазой одновременно. Таким образом, реальная модель была более сложной, чем выражение в (1).Итак, Уильямс и Доу [8] разработали функцию следующим образом: где. Фактор — это отношение, которое тепловой поток передает вместе с градиентами температуры к общему тепловому потоку, в то время как является фактором отсутствия соединения твердое тело-твердое тело и для существования соединения твердое тело-твердое тело и соединения твердое тело-жидкость.

Действительно, в микропространственной структуре материалов пористой среды существование идеального равномерного распределения пор в пористом теле невозможно.Таким образом, существует большая ошибка между упомянутой выше идеальной моделью и реальным телом. Доступные идеальные модели и эмпирические уравнения для пенопластовых теплоизоляционных материалов обычно связаны только с пропорцией пор, которая является приблизительным отражением кажущейся теплопроводности в макропространстве. Но для реального вспененного материала, распределение пор которого нерегулярно, доступные идеальные модели и эмпирические уравнения не относятся к микроструктуре и не могут раскрыть фактическую процедуру тепломассопереноса и распределение температуры и влажности.Как следствие, большая ошибка — наличие в исследовательской работе.

Другой метод связан с теорией фракталов. Теория фракталов, внедренная в оценочные и исследовательские работы по расчету теплопроводности пористых пеноматериалов, представляет собой новый путь развития теории тепловых характеристик материалов пористой среды. Теория фракталов была впервые выдвинута в 1975 году Мандельбротом, профессором Гарвардского университета в США. Некоторые эксперты, такие как Питчумани [9], Ю и Ли [5], а также Ма и др.[6], провели глубокие исследования эффективной теплопроводности гранулированной пористой среды с помощью теории фракталов и создали соответствующие математические уравнения. Основываясь на теории фракталов, Thovert et al. [10], Zhang et al. [11] и др. Разработали теоретические модели для расчета эффективной теплопроводности неоднородной пористой среды. Согласно концепции модели ковра Серпинского, Пичумани и Рамакришнан [12, 13] создали теоретическую модель распределения пор, но модель и математические уравнения были очень сложными во фрактальной размерности.Ma et al. [6] построили математическую модель эффективной теплопроводности для пористой среды в соответствии с теорией фракталов, которая показала, что теплопроводность пористой среды зависит от соотношения пор, соотношения площадей, соотношения теплопроводности в компонентах и ​​теплопроводности. контактное сопротивление все вместе. Это не имело ничего общего с эмпирическими константами и меньшим количеством параметров и просто вычислялось по формуле. Однако разные пористые среды не идентичны друг другу по внутренней фрактальной сущности.Кроме того, на практике сложно оценить термическое контактное сопротивление пористой среды. Универсальность модели еще требует дополнительной проверки. Thovert et al. [10] осветили фрактальную пористую среду с помощью перколяционной математической модели и выполнили решение с помощью геометрической итерации. После этого Адлер, Товерт и Томпсон добавили эмпирические константы, полученные в результате экспериментов, в функцию Адлера. И функция обычно описывается как где — теплопроводность жидкости в порах пористого материала ().А верхний индекс здесь определяется как: где фактор фрактальной размерности = 2.5–2.85, а спектральная размерность используется для описания процедуры перколяции в порах.

Яншэн [14], основываясь на теории перколяции, установил взаимосвязь между диаметром пор в различных зернистых материалах и теплопроводностью. Но пористость пор, фрактальная размерность и микроструктура в модели не участвуют. Пичумани и Яо [15] рассчитали поперечные и продольные фрактальные измерения для освещения микроструктуры волокнистых материалов, а коэффициент теплопроводности был получен на основе традиционной теории теплопередачи.Но модель хорошо работает только с некоторыми волокнистыми пористыми материалами.

Итак, построение теоретически математической модели эффективной теплопроводности, универсальной для пористой среды, значительно затруднительно и непрактично. Следовательно, создание математической модели теплопроводности для одной определенной пористой среды, отражающей ее структурную характеристику во внутреннем мире, является важным развивающимся направлением исследований по пористой среде.

2. Микроструктуры пенополиуретана с открытыми порами и описание фрактала
2.1. Микроструктуры

Полиуретан с открытыми ячейками состоит из твердых субстратов и ячеек. Под действием пенообразователя и агента открытия ячеек образуется большое количество ячеек, которые непрерывно распределяются внутри материала. Ячейки соединяются друг с другом бок о бок, и газ в порах может свободно течь через одну ячейку в другую. Это действительно преимущество для удаления пенообразователя и паров, скопившихся в порах. Между тем газ в порах может быть легко вытеснен прочным соединением ячеек.Твердая подложка из полиуретана с открытыми порами имеет определенную прочность, чтобы поддерживать материал и предотвращать разрушение в вакууме. Таким образом, пенополиуретан с открытой структурой ячеек может широко использоваться в качестве основного материала вакуумной изоляционной панели.

Микроструктура полиуретана с открытыми ячейками, состоящая из скелета твердой подложки (белая часть на рисунке) и ячеек (черная часть на рисунке), показана на рисунке 1 (полученном с помощью электронной микроскопии). Ячейки обычно имеют кубическую форму в пространстве и непрерывно распределены в плоскости сечения, а размеры отверстий находятся в диапазоне 140–220 м, а длина среднего каркаса составляет 125 м.Размеры ячеек различны, а распределение случайное и неравномерное.


2.2. Описание фрактала

Теория фракталов с момента своего зарождения вызвала интерес многих ученых благодаря своим уникальным преимуществам исследования нерегулярных и сложных геометрических объектов и успеху в решении многих задач геометрии, физики, геологии, гилологии и т. Д. на. Между тем, различные проблемы в научных дисциплинах также способствовали развитию теории фракталов.Теория фракталов — это эффективный подход к описанию нелинейных явлений в природе, сложных геометрических структур, внутренних объектов и пространственного распределения. Теория фракталов сначала провела исследование нелинейных сложных систем и проанализировала внутренние законы изучаемых предметов, которые не были упрощенными и абстрактными. В этом существенное отличие теории фракталов от линейного пути. Два предмета можно рассматривать как самоподобие, при этом значения фрактальной размерности равны согласно теории фракталов.Эксперты и исследователи построили различные фрактальные модели для материалов пористой среды, а многие исследователи применяют такие известные модели, как модель ковра Серпинского, модель губки Менгера и модель кривой Коха. Однако материалы почти пористой среды по своей природе не совпадают с упомянутыми выше моделями. Они не являются строгим подобием, но похожи по математическому расчету.

Согласно теории фракталов, это самоподобное масштабное соотношение между метрической мерой объектов и физической величиной, существующей в размерном евклидовом пространстве, включая площадь и объем, или длину пористого фрактала [16]:

Для одного фрактального тела значение фрактальной размерности находится в диапазоне от 2 до 3.Но для полиуретана с открытыми порами микроструктуры диаметры пор разные. Структура нерегулярная, а распределение случайное. Для пенополиуретана с открытыми порами наибольший размер пор ячеек = 220 мкм, а наименьший -; и предполагая длину такта для шага, объем ячейки V можно описать следующим образом:

На основании теории фракталов, распределение ячеек статистически самоподобно для пенополиуретана с открытыми ячейками.Уравнение (6) можно заменить следующим: где C постоянная. Логарифмируя (7), (8) можно получить как

Согласно методу случайных фракталов ковра Серпинского, на Рисунке 1 вычислен фрактал, и результат показан на Рисунке 2. То есть, объем пенополиуретана с открытыми ячейками в этом исследовании имеет фрактальную характеристику, а значение фрактальной размерности соответствует образцу.


Однако структура пористой среды нерегулярна, и распределение пор также является случайным.Физическая величина, количество пор, зависит от диаметра пор D . Итак, (5) можно переписать как или же

Воздух — теплопроводность

Теплопроводность — это свойство материала, которое описывает способность проводить тепло . Теплопроводность может быть определена как

« количество тепла, передаваемого через единицу толщины материала — в направлении, нормальном к поверхности единицы площади — из-за единичного температурного градиента в условиях устойчивого состояния».

Наиболее распространенными единицами измерения теплопроводности являются Вт / (м · К) в системе СИ и британские тепловые единицы / (ч фут ° F) в британской системе мер.

Табличные значения и преобразование единиц теплопроводности приведены под рисунками.

Онлайн-калькулятор теплопроводности воздуха

Калькулятор, представленный ниже, можно использовать для расчета теплопроводности воздуха при заданных температуре и давлении.
Выходная проводимость выражается в мВт / (м · К), британских тепловых единицах (IT) / (ч фут · ° F) и ккал (IT) / (ч · м · K).

См. Также другие свойства Воздуха при изменяющейся температуре и давлении: Плотность и удельный вес при различной температуре, Плотность при переменном давлении, Коэффициенты диффузии газов в воздухе, Число Прандтля, Удельная теплоемкость при различной температуре и Удельная теплоемкость при переменное давление, температурная диффузия, свойства в условиях газожидкостного равновесия и теплофизические свойства воздуха при стандартных условиях, а также состав и молекулярная масса,
и теплопроводность аммиака, бутана, диоксида углерода, этана, этилена, водорода, метана , азот, пропан и вода.

См. Также Калькулятор теплопроводности

Вернуться к началу

Вернуться к началу


Вернуться к началу

Теплопроводность воздуха при атмосферном давлении и температурах в ° C:

71,35
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [Btu (IT) / (ч фут ° F)]
-190 7.82 0,00672 0,00452
-150 11,69 0,01005 0,00675
-100 16,20 0,01393104 0,01393104 0,01060
-50 20,41 0,01755 0,01179
-25 22,41 0.01927 0,01295
-15 23,20 0,01995 0,01340
-10 23,59 0,02028 0,01363 0,01363 0,01363
0 24,36 0,02094 0,01407
5 24,74 0,02127 0,01429
10 25.12 0,02160 0,01451
15 25,50 0,02192 0,01473
20 25,87 0,02225 0,02214
30 26,62 0,02289 0,01538
40 27,35 0,02352 0.01580
50 28,08 0,02415 0,01623
60 28,80 0,02477 0,01664
80101 0,01664
0 30101 31,62 0,02719 0,01827
125 33,33 0,02866 0,01926
150 35.00 0,03010 0,02022
175 36,64 0,03151 0,02117
200 38,25 0,03289 0,03289 0,03289 0,02
300 44,41 0,03819 0,02566
412 50,92 0,04378 0.02942
500 55,79 0,04797 0,03224
600 61,14 0,05257 0,03533 0,05257 0,03533
0,06135 0,04122
900 76,26 0,06557 0,04406
1000 81.08 0,06971 0,04685
1100 85,83 0,07380 0,04959

Наверх
Теплопроводность воздуха при атмосферном давлении

55

03 и температурах, приведенных в ° F: 999 9001: 999 9003 Теплопроводность [° F] [BTU (IT) / (h ft ° F)] [ккал (IT) / (hm K)] [мВт / м · К] -300 0.00484 0,00720 8,37-200 0,00788 0,01172 13,63-100 0,01068 0,01510864 0,0151086 20,77-20 0,01277 0,01901 22,10 0 0,01328 0.01976 22,98 10 0,01353 0,02013 23,41 20 0,01378 0,02050 23,8104 40 0,01427 0,02123 24,70 50 0,01451 0,02160 25,12 60 0.01476 0,02196 25,54 70 0,01500 0,02232 25,95 80 0,01524 0,0221067 0,022103 120 0,01618 0,02408 28,00 140 0,01664 0,02477 28.80 160 0,01710 0,02545 29,60 180 0,01755 0,02612 30,38 0,0101 0,01911 0,02843 33,07 300 0,02018 0,03003 34,93 350 0.02123 0,03160 36,75 400 0,02226 0,03313 38,53 450 0,02327 0,03410 40101 600 0,02620 0,03898 45,34 700 0,02807 0.04177 48,58 800 0,02990 0,04449 51,74 1000 0,03342 0,04973 1200104 1400 0,04007 0,05963 69,35 1600 0,04325 0,06436 74.85 1800 0,04635 0,06898 80,23 2000 0,04941 0,07353 85,51

Преобразователь теплопроводности

Единицы преобразования теплопроводности

03 тепловая единица (международная) / (фут-час, градус Фаренгейта) [Btu (IT) / (ft h ° F], британская тепловая единица (международная) / (дюйм-час, градус Фаренгейта) [BTU (IT) / (в h ° F) , британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(британские тепловые единицы (IT) дюйм) / (фут² час ° F)], килокалория / (метр час градус Цельсия) [ккал / (mh ° C)], джоуль / (сантиметр второй градус кельвина) [Дж / (см · с · K)], ватт / (метр градус кельвина) [Вт / (м ° C)],

  • 1 Btu (IT) / (ft ч ° F) = 1/12 Btu (IT) / (в ч ° F) = 008333 британских тепловых единиц (IT) / (в ч ° F) = 12 британских тепловых единиц (IT) в / (фут 2 ч ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см · с · K) = 1,731 Вт / (м · К)
  • 1 британских тепловых единиц (IT) / (в час · ° F) = 12 британских тепловых единиц (IT) / (фут · час · ° F) = 144 британских тепловых единицы (IT) · дюйм / (фут 2 час · ° F) = 17,858 ккал / (м · ч ° C) = 0,20769 Дж / (см · с · K) = 20,769 Вт / (м · K)
  • 1 (британских тепловых единиц (IT) дюйм) / (фут² час ° F) = 0,08333 британских тепловых единиц (ИТ) / ( фут ч ° F) = 0,00694 британских тепловых единиц (IT) / (в час ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см · с · K) = 0,1442 Вт / (м · K)
  • 1 Дж / ( см · с · K) = 100 Вт / (м · K) = 57,789 БТЕ (IT) / (фут · ч · ° F) = 4.8149 БТЕ (IT) / (в час ° F) = 693,35 (БТЕ (IT) дюйм) / (фут² час ° F) = 85,984 ккал / (мч ° C)
  • 1 ккал / (мч ° C) = 0,6720 БТЕ (IT) / (фут · ч ° F) = 0,05600 Btu (IT) / (в час · ° F) = 8,0636 (BTU (IT) дюйм) / (фут 2 час · ° F) = 0,01163 Дж / (см · с · K ) = 1,163 Вт / (м · К)
  • 1 Вт / (м · К) = 0,01 Дж / (см · с · К) = 0,5779 БТЕ (IT) / (фут · ч · ° F) = 0,04815 БТЕ (IT) / (дюйм · ч ° F) = 6,9335 (британских тепловых единиц (IT) дюйм) / (фут² ч ° F) = 0,85984 ккал / (мч ° C)

Вернуться к началу

Теплопроводность вспененного материала — Большая химическая энциклопедия

Теплопроводность вспененного пластика было показано, что она зависит от толщины (197).Это было приписано граничным эффектам лучистого вклада в теплопередачу. [Pg.414]

Механические свойства при низких скоростях деформации, динамические механические свойства, характеристики восстановления ползучести, тепловое расширение и теплопроводность пен, изготовленных из смесей ПЭНП с ЭВА и блок-сополимером изопрена и стирола, были изучены как функция содержания ПЭНП в смесях. Результаты экспериментов продемонстрировали важные аспекты, связанные с изменением свойств пены путем смешивания.16 исх. [Pg.66]

Существуют различные модели для расчета теплопроводности вспененных или наполненных пластиков [39,47, 51]. Обычно используется правило смесей, предложенное Кнаппе [39] … [Pg.41]

Кажущаяся теплопроводность пен зависит от объемной плотности вспененного материала, используемого газа … [Pg. 189]

Экспериментальное исследование теплопроводности пен показало [78], что при диаметрах пузырьков более 3–4 мм существенную роль в теплопроводности играет конвекция внутри пузырька.Эти данные описываются соотношением … [Pg.606]

Рис. 23. Теплопроводность пены в панелях (пенопласт, продуваемый CFC-11) (212).
Тепловые свойства. Проводимость грязи. Как указано выше, теплопроводность фенольных пен значительно меняется в зависимости от того, являются ли они с закрытыми или открытыми ячейками. Как правило, теплопроводность пен с закрытыми ячейками на 90% или более находится в диапазоне 0.015 ккал / мч ° C, но если у них есть открытые ячейки, теплопроводность увеличивается до 0,030-0,035 ккал / мч. Если пенопласты имеют закрытые ячейки на 50-80%, их теплопроводность будет промежуточным значением между двумя приведенными выше цифрами. Между тем, теплопроводность пен с 50% или менее закрытыми ячейками будет почти такой же, как у пен с открытыми ячейками. [Стр.209]

ТЕПЛОПРОВОДНОСТЬ ПЕНОПОЛИСТИРОЛА В ОБЛАСТИ ПЕРЕХОДНОЙ ТОЧКИ ВТОРОГО ПОРЯДКА. [Pg.183]

Теплопроводность пен, расширенных с помощью CO2, быстро изменяется из-за диффузии газов в ячейки и CO2 из них.Проницаемость ПУ для различных газов показана в Таблице I. Расширение пены фторуглеродом, таким как трихлорфторметан (CCI3F) или дихлордифторметан (CCI2F2)> снижает теплопроводность пены. Фторуглерод также … [Pg.173]

Рис. 4.38. Теплопроводность коммерчески доступного пенографита (пены Poco) по сравнению с теплопроводностью пены, первоначально произведенной для этого проекта (необлученные образцы OP-1, OP-4 и OP-10).
Пены представляют собой особенно важный класс многофазных полимерных систем, и их характеристики теплопроводности интересны и сложны. Как видно из таблиц 1 и 6, теплопроводность пен может быть очень низкой, в некоторых случаях значительно ниже, чем у воздуха. [Pg.1181]

Чтобы сравнить теплопроводность образцов пенопласта, достаточно просто сравнить время, необходимое для данного повышения температуры.В нашем эксперименте горячая пластина при температуре 54 ° C касалась дна образца пены. Начальная температура верхней части образца пены была комнатной. Две термопары … [Pg.2249]

Для измерения теплопроводности образец C и образец пенопласта из сосны были измерены описанным выше методом. Было обнаружено, что для повышения температуры с 33,2 до 34,5 ° C для чистого PS sanple потребовалось 33 минуты и 40 минут для образца C. Это указывает на то, что с добавлением активированного угля теплопроводность образцов пены уменьшается.Дальнейшие эксперименты с измерителем теплового потока (FOX 200, LaserComp) будут проводиться для изучения влияния активированного угля и влаги. [Pg.2250]

Поскольку поры в аэрогеле сравнимы со средней длиной свободного пробега молекул в условиях окружающей среды (около 70 нм) или меньше ее, газовая теплопроводность внутри них является малоэффективной. В сочетании с тем, что такая проводимость подавляется из-за низкой плотности, аэрогель SiUca имеет типичную теплопроводность 0,015 Вт / (м-К) без вакуумирования.Это значение, по крайней мере, на порядок ниже, чем у обычного стекла, и значительно ниже, чем у пенополиуретанов, вспениваемых CFC (хлорфторуглеродом) (54). [Стр.6]

Теплопроводность. Доступно больше информации о связи теплопроводности со структурными переменными ячеистых полимеров, чем о любом другом свойстве. В нескольких статьях обсуждалась связь теплопроводности гетерогенных материалов в целом (187,188) и пенопласта в частности (132,143,151,189-191) с характеристическими структурными переменными систем.[Pg.414]

В качестве хорошего первого приближения (187) теплопроводность пен с низкой плотностью через твердую и газовую фазы можно выразить как произведение теплопроводности каждой фазы на ее объемную долю. Большинство жестких полимеров имеют теплопроводность 0,07-0,28 Вт / (мК), а соответствующая проводимость через твердую фазу пены 32 кг / м (2 фунта / фут) (3 об.%) Находится в диапазоне 0,003-0,009 Вт / (мК). . В большинстве ячеистых полимеров это значение определяется, прежде всего, плотностью пены и составом полимерной фазы.Меньшие вариации могут быть результатом изменений клеточной структуры. [Pg.414]

Теплопроводность большинства материалов уменьшается с температурой. Когда на структуру пены и состав газа не влияет температура, k ячеистого материала уменьшается с понижением температуры. Когда состав газовой фазы может измениться (например, конденсация пара), тогда зависимость k от температуры намного сложнее (143,191,198). [Pg.414]

Теплопроводность ячеистого полимера может измениться при старении в условиях окружающей среды, если такое старение влияет на состав газа.Такой случай подтверждается, когда кислород или азот диффундируют в пенополиуретаны, которые изначально содержат только фторуглеродный вспениватель в ячейках (32,130,143,190,191,198-201). [Pg.414]

J. Isberg, Теплопроводность пенополиуретана, Технологический университет Чалмерса, Гетеборг, Швеция, 1988. [Pg.337]

Пенополистирол толщиной 2,54 см с теплопроводностью около 0,03 Вт / (м · К) (0,21 (БТЕ-дюйм) / (фут-бар · ° F)) эквивалентно 61 см гравия. Эффективна любая синтетическая пена, имеющая достаточно высокую прочность на сжатие и достаточно низкую теплопроводность.Тем не менее, устойчивость пенопласта к воздействию воды, морозов и микроорганизмов в дерне делает их особенно желательными. Интересным и важным приложением этой концепции было использование пенополистирола при строительстве трубопровода на Аляске. В данном случае пену использовали для защиты от вечной мерзлоты. [Pg.527]

За исключением случаев, когда пена окружена оболочкой из относительно непроницаемого материала, можно было бы ожидать, что выдуваемый газ будет диффундировать и заменяться воздухом, и что теплопроводность пен будет увеличиваться, пока они не приблизятся такой же плотности пенополистирола.В то время как это … [Pg.802]

Другими основными тепловыми свойствами пластмасс, которые имеют отношение к конструкции, являются теплопроводность и коэффициент теплового расширения. По сравнению с большинством материалов пластмассы имеют очень низкие значения теплопроводности, особенно если они вспенены. На рис. 1.10 показано сравнение теплопроводности некоторых металлов, пластмасс и строительных материалов. В отличие от их низкой проводимости, пластмассы имеют высокие коэффициенты расширения по сравнению с металлами.Это проиллюстрировано на рис. 1.11, а таблица 1.8 дает более полную информацию о тепловых свойствах пластмасс и металлов. [Стр.32]

Секции стенок из пенопласта толще, чем из твердого материала. Следовательно, можно ожидать увеличения продолжительности цикла из-за толщины стенок и низкой теплопроводности ячеистого материала. Однако, в отличие от этого, давление впрыска при формовании пенопласта низкое по сравнению с обычным литьем под давлением. Это означает, что на единицу площади формования требуется меньшее усилие зажима, а затраты на пресс-форму меньше, поскольку могут использоваться материалы пресс-формы меньшей прочности.[Стр.298]

Было исследовано влияние смешивания ПЭНП с ЭВА или блок-сополимером стирола и изопрена (178). Свойства (коэффициент теплового расширения. Модуль Юнга, теплопроводность) вспененных смесей обычно лежат в пределах границ вспененных компонентов, хотя взаимосвязь между свойством и содержанием смеси не всегда линейна. Причины должны быть в микроструктуре: большинство пар полимеров несовместимы, но некоторые пары, такие как ПС / полифениленоксид (ППО), смешиваются.В несмешивающихся смесях основная фаза имеет тенденцию быть непрерывной, но форма второстепенной фазы может изменяться. Смеси этилен-октенового сополимера этилена и октена, катализируемые металлоценом, имеют различную морфологию в зависимости от содержания этиленвинилацетата (5). При 25% EVA фаза EVA проявляется в виде мелких сферических включений в матрице LDPE. Результаты этих экспериментов с полимерными пленками применимы к пенам, изготовленным из тех же полимеров. [Pg.4]

Journal of Cellular Plastics 37, No. 1, Jan. 2001, p.21-42 ТЕПЛОПРОВОДНОСТЬ БЛОКА ПОЛИЭТИЛЕНОВОГО ПЕНА, ПОЛУЧЕННОГО В ПРОЦЕССЕ ФОРМОВАНИЯ СЖАТИЕМ Martinez-Diez JA Rodriguez-Perez MA De Saja JA Аркос и Рабаго Л.О. Альманза О.А… [Pg.40]

Листы вспененного полиэтилена низкой плотности толщиной 10 мм были вырезаны из блока, полученного методом компрессионного формования, и была определена их теплопроводность в диапазоне температур от 24 до 50 ° C. Была проанализирована эволюция свойств вдоль блока, и структура ячеек, кажущийся средний диаметр ячеек, анизотропия, средняя толщина стенки ячеек и относительная доля полимера были определены с использованием количественного анализа изображений и ранее описанной модели, используемой для прогнозирования теплопроводности пен. .30 исх. [Pg.40]

Была измерена теплопроводность секции коммерчески производимого канала из вспененного полиэтилена высокой плотности. Стены состояли из пенопласта толщиной 6,4 мм с обшивкой толщиной 1,6 мм с каждой стороны. Каркасы были обработаны с внешней поверхности канала, так что тепловой поток по всей толщине стержня сердечника удерживает один поверхностный слой, и все сечение … [Pg.42]

Исследование проводилось на бетоне, содержащем до до 30% отходов пенополиэтилена для оптимизации теплопроводности бетона.Аморфный агрегат золошлаковых отходов использовался для снижения теплопроводности бетона. 5 исх. [Стр.53]

Была произведена серия пенополиолефинов низкой плотности, которые были изучены с точки зрения их теплопроводности, ячеистой структуры и морфологии полимерной матрицы. Для прогнозирования теплопроводности определенного материала представлено математическое уравнение. 26 исх. [Pg.59]

ТЕПЛОПРОВОДНОСТЬ ПОЛИЭТИЛЕНОВЫХ ПЕН, ИЗГОТОВЛЕННЫХ С ПОМОЩЬЮ АЗОТНОГО РАСТВОРА… [Pg.60]


Влияние влажности на теплопроводность — Большая химическая энциклопедия

Когда стенки ячеек сжимаются в многогранники, имеет место эффект утонения стенок, и жидкость стекает с поверхностей стенок ячеек в линии пересечения ячеек, образуя ребра или распорки, которые обычно имеют треугольное поперечное сечение. Это истончение мембраны клеточной стенки может продолжаться до точки, когда клеточные стенки разрушаются и клетки открываются. Это становится очень важной характеристикой большинства пенопластов и влияет на такие свойства, как теплопроводность, влагопоглощение, воздухопроницаемость и несущая способность.[Pg.207]

Эффективная теплопроводность и эффективная диффузия влаги связаны с внутренним тепло- и массообменом, соответственно, в то время как коэффициенты тепло- и массообмена на границе воздуха связаны с внешним тепло- и массообменом соответственно. Вышеупомянутые транспортные свойства обычно являются коэффициентами в соответствующем соотношении расхода и движущей силы. С другой стороны, равновесное содержание влаги в материале обычно связано с движущей силой массопереноса. [Стр.78]

Л.И. Кнаб, Д.Р. Дженкинс и Р.Г. Мэти, «Влияние влаги на теплопроводность кровельных систем», NBS Building Science Series 123, Национальное бюро стандартов, Министерство торговли США, Вашингтон, округ Колумбия, апрель. 1980. [Pg.337]

Теплопроводность увеличивается с увеличением кажущейся плотности, содержания летучих веществ, золы и минеральных веществ. Из-за высокой пористости угля теплопроводность также сильно зависит от природы газа, пара или жидкости в порах, даже для монолитных образцов (van Krevelen, 1961).Влага имеет аналогичный эффект и увеличивает теплопроводность угля, поскольку ее значение теплопроводности примерно в три раза выше, чем у сухого угля (Speight, 1994, и ссылки, указанные в нем). Однако на коэффициент температуропроводности угля практически не влияет влажность, поскольку значение / Cp существенно не изменяется под действием влаги. [Pg.153]

C Как конденсация или замерзание водяного пара в стене влияет на effclivene.ss изоляционного материала в стене. Как влажность влияет на эффективную теплопроводность почвы… [Pg.844]

Причиной этой разницы могло быть возможное комбинированное влияние теплопроводности и газопроницаемости. Самая низкая теплопроводность у блоков 16 из тополя (см. Таблицу I), а газопроницаемость самая низкая для тополя. Сочетание этих двух факторов может способствовать задержке и замедлению образования летучих веществ для блоков 16 тополя. Однако мы должны подчеркнуть тот факт, что разница между этими блоками 16 тополя и другими образцами не так велика, хотя и значительна в случае фактора а, разница составляет от S до 6 мин для безводных образцов древесины, от 20 до 30 мин для влажные образцы древесины, когда содержание влаги создает различия между безводными и влажными образцами порядка 60 мин.[Pg.1628]

Однако для влажных образцов древесины (h47) мы наблюдаем значительное влияние формы и породы, но без значительного взаимодействия между обоими факторами. Потоки энергии задерживаются для блоков 16 по сравнению с кубами 4 и для тополя по сравнению с буком. Эффект удлинения деревянных блоков в направлении волокон, а также влияние породы влияют на физические свойства образцов древесины. при карбонизации (снижение теплопроводности и газопроницаемости).Эти эффекты могут быть усилены влажностью древесины. [Pg.1628]

Теплопроводность древесины также значительно увеличивается с увеличением содержания в ней влаги, а также с другими факторами, такими как температура и удельный вес. Ряд предложенных эмпирических уравнений показывает, что теплопроводность древесины увеличивается с увеличением влажности. Эти уравнения были обобщены Сиау (45), который предположил, что основным эффектом воды было набухание клеточной стенки и, таким образом, обеспечение большей площади теплопроводности для данной древесины.[Pg.154]

Один из способов выразить изоляционные свойства текстиля — это указать «эффективную теплопроводность». Здесь термин «эффективный» относится к тому факту, что проводимость рассчитывается исходя из скорости теплового потока на единицу площади ткани, деленной на градиент температуры между противоположными поверхностями. Это неверное условие, потому что передача тепла происходит за счет теплопроводности через волокна, воздух и инфракрасное излучение. Если присутствует влага, могут быть задействованы и другие механизмы.Исследования термического сопротивления швейных тканей [42-47] показали, что термическое сопротивление сухой ткани или … [Pg.246]

Однако не только ветер играет важную роль в защите не менее важно влияние влаги. И вода, и пары влаги приводят к снижению теплоизоляции из-за того, что вода имеет более высокую теплопроводность … [Pg.260]

Эффективная диффузия влаги и эффективная теплопроводность, как правило, зависят от содержания влаги в материале и температуры загара. что касается структуры материала.Коэффициенты границы воздуха зависят от условий осушающего воздуха, то есть влажности, температуры и скорости, а также геометрии системы. Равновесная влажность данного материала зависит от влажности и температуры воздуха. Константа сушки зависит от влажности материала, температуры и толщины, а также от влажности воздуха, температуры и скорости. [Pg.78]

Было получено уравнение, связывающее эффективный коэффициент диффузии пористых пищевых продуктов с различными физическими свойствами, такими как молекулярная масса, объемная плотность, проницаемость парового пространства, активность воды в зависимости от содержания влаги в материале, давления водяного пара, теплового проводимость, теплота сорбции и температура [80].Была предложена прогностическая модель для получения эффективных коэффициентов диффузии в клеточной пище. Для этого метода требуются данные о составе, бинарной молекулярной диффузии, плотности, проницаемости мембран и клеточных стенок, молекулярной массе, вязкости воды и молярном объеме [81]. Влияние влаги на эффективный коэффициент диффузии учитывается через энергию связи сорбции в уравнении, предложенном в [4]. [77]. [Стр.85]

Эффективную теплопроводность можно определить с помощью методов, представленных в Таблице 4.5, который включает соответствующие ссылки. Методы измерения теплопроводности можно разделить на стационарные и переходные. Переходные методы более популярны, потому что они могут работать всего 10 секунд, в течение которых миграция влаги и другие изменения свойств остаются минимальными. [Стр.86]

Несмотря на ограниченные данные об эффективной диффузии влаги, в литературе приводится много данных по теплопроводности. Данные в основном для однородных материалов доступны в справочниках, таких как Handbook of Chemistry… [Pg.86]

Эффективный коэффициент диффузии влаги Граничный коэффициент массопередачи по воздуху Эффективная теплопроводность Граничный коэффициент теплопередачи по воздуху … [Pg.97]

Транспортным свойствам пищевых продуктов уделяется много внимания в литературе [184-188 ]. В этом разделе резюмируются основные результаты, представленные Саравакосом и Марулисом [188]. Результаты относятся к коэффициенту влагопроводности и теплопроводности. Недавно опубликованные значения коэффициента диффузии влаги и теплопроводности в различных пищевых продуктах были взяты из литературы, классифицированы и проанализированы статистически, чтобы выявить влияние влажности материала и температуры.Эмпирические модели, связывающие коэффициент диффузии влаги и теплопроводность с содержанием влаги и температурой материала, были адаптированы ко всем исследованным данным для каждого материала. Данные были тщательно проверены с использованием методов остаточного анализа. Была предложена многообещающая модель, основанная на эффекте температуры типа Аррениуса, в которой используется параллельная структурная модель для учета влияния влажности материала. [Стр.100]

Как правило, теплопроводность увеличивается с увеличением содержания влаги.Положительно влияет температура, которая сильно зависит от пищевого материала. Энергия активации теплопроводности E, как правило, выше в сухих пищевых материалах. [Стр.104]

Воздействие влаги в ячейках заключается в изменении размеров и веса пены, а также, как будет рассмотрено позже, теплопроводности. … [Pg.187]

Несмотря на ограниченность данных по эффективному коэффициенту диффузии влаги, в литературе приводится много данных по теплопроводности. Данные в основном для однородных материалов доступны в справочниках, таких как Справочник по химии и физике [91], Справочник инженеров-химиков [92], Справочник по основам ASHRAE [93], Rohsenow and Choi [94] и многие другие.По пищевым продуктам и сельскохозяйственной продукции данные доступны в Справочниках. [83,88,95-97]. Для отдельных фармацевтических материалов данные представлены Паковски и Муджумдаром [98]. [Стр.112]


Эффективная теплопроводность пенобетона разной плотности

Прочность бетона

Прочность бетона При проектировании и контроле качества бетона обычно указывается прочность.Это связано с тем, что по сравнению с большинством других свойств испытать прочность относительно легко. Кроме того,

Подробнее

Глава 8 Проектирование бетонных смесей

Глава 8 Проектирование бетонных смесей 1 Основная процедура расчета бетонных смесей применима к бетону для большинства целей, включая тротуары. Бетонные смеси должны встречаться; Технологичность (просадка / вебе) на сжатие

Подробнее

Пожарные и бетонные конструкции

Пожарные и бетонные конструкции Авторы: Дэвид Н.Билоу, П.Е., С.Е., директор по проектированию конструкций, Portland Cement Association 5420 Old Orchard Road, Skokie, IL 60077, телефон 847-972-9064, электронная почта: [email protected]

Подробнее

1.5 Бетон (Часть I)

1.5 Бетон (Часть I) В этом разделе рассматриваются следующие темы. Составляющие бетона Свойства затвердевшего бетона (Часть I) 1.5.1 Составляющие бетона Введение Бетон — композитный материал

Подробнее

Всасывание почвы.Полное всасывание

Всасывание почвы Полное всасывание Полное всасывание почвы определяется в терминах свободной энергии или относительного давления пара (относительной влажности) влажности почвы. Ψ = v RT ln v w 0ω v u v 0 (u) u = частичное

Подробнее

Фильтр вспомогательной фильтрации

Вспомогательная фильтрация Фильтрация Фильтрация — это отделение твердых частиц от жидкостей путем принудительного протекания жидкости через пористую среду и осаждения твердых частиц на ней.Фильтрующее средство (мелкодисперсный материал

Подробнее

Устойчивая теплопроводность

Устойчивая теплопроводность. В термодинамике мы рассматривали количество теплопередачи, когда система претерпевает процесс перехода из одного состояния равновесия в другое. Гермодинамика не показывает, как долго

Подробнее

Свойства свежего бетона

Свойства свежего бетона Введение Потенциальная прочность и долговечность бетона данной пропорции смеси во многом зависит от степени его уплотнения.Поэтому жизненно важно, чтобы

Подробнее

ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ

ИНЖЕНЕРНЫЙ 2 КВАРЦЕВОЙ КАМЕНЬ 18 ХОРОШИЕ ОТРАСЛЕВЫЕ ПРАКТИКИ 2 ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ Природные камни, особенно гранит, использовались для изготовления полов и материалов столешниц в элитных домах из-за их красоты и

Подробнее

2. ПОДГОТОВКА ИСПЫТАНИЙ.

Выщелачивание цементной футеровки в недавно проложенных водопроводах (Часть II) Онг Туан Чин и др.Школа гражданского строительства и охраны окружающей среды им. Вонг Сук Фан, Технологический университет Наньян, 5 Nanyang Avenue, Сингапур

Подробнее

Североамериканский нержавеющий

Плоские нержавеющие изделия в Северной Америке Лист нержавеющей стали марки 310S (S31008) / EN 1.4845 Введение: SS310 — это высоколегированная аустенитная нержавеющая сталь, предназначенная для работы при повышенных температурах.

Подробнее

ПРИМЕНЕНИЕ ДЛЯ КОММЕРЧЕСКОГО ЗДАНИЯ

РАСШИРЕННЫЙ ПОЛИСТИРОЛ ДЛЯ КОММЕРЧЕСКОГО ЗДАНИЯ www.falconfoam.com Изоляция из вспененного полистирола для коммерческих зданий. Компания Falcon Foam является лидером отрасли коммерческого строительства, предлагая продукцию

Подробнее

Лекция 9, Тепловые заметки, 3.054

Лекция 9, Тепловые заметки, 3.054. Тепловые свойства пен Пенопласты с закрытыми ячейками, широко используемые для теплоизоляции. Аэрогели (как правило, хрупкие и слабые) и вакуумные

имеют только материалы с более низкой проводимостью. Подробнее

Внутренняя система предотвращения плесени

Внутренняя изоляция и ремонтные панели Система компонентов, которые были разработаны для идеальной работы вместе для устранения повреждений, вызванных плесенью.Система состоит из досок, изоляционных клиньев, откос

Подробнее

Затвердевший бетон. Лекция № 14

Лекция по затвердевшему бетону № 14 Прочность бетона Прочность бетона обычно считается его наиболее ценным свойством, хотя во многих практических случаях и другие характеристики, такие как долговечность

Подробнее

ТЕПЛОПРОВОДНОСТЬ И КОЭФФИЦИЕНТ ТЕПЛОВОГО РАСШИРЕНИЯ КОМПОЗИТНЫХ ЛАМИНАТОВ GFRP С НАПОЛНИТЕЛЯМИ

ТЕХНИЧЕСКИЙ ПАСПОРТ

EPOXY — NG1001 — система на основе смолы для предварительной обработки Общая информация Описание: ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ EPOXY — NG1001 — это система на основе смолы на основе эпоксидной смолы для предварительной обработки горячего расплава и давления

Подробнее

Основы доводки и полировки

Отчет лаборатории по основным применениям притирки и полировки 54 Притирка и полировка 1.0: Введение Притирка и полировка — это процесс точного удаления материала с заготовки (или образца)

Подробнее

4 Термомеханический анализ (ТМА)

172 4 Термомеханический анализ 4 Термомеханический анализ (ТМА) 4.1 Принципы ТМА 4.1.1 Введение Дилатометр используется для определения линейного теплового расширения твердого тела как функции температуры.

Подробнее

Процесс термической обработки

Процесс термообработки Холитаун, Шотландия Соединенное Королевство Резисторы — Изоляция — Защита Чунцин, Китай C / C крепление, стержни и балки Изоляция St-Marys, США Gennevilliers, Франция Основные производственные площадки Промышленные

Подробнее

Термоклеи Ther-O-Bond 1500

Продукты / Интерфейсные материалы / Клеи Клеи Bond 1500 Эпоксидная литьевая система для заливки и инкапсуляции Bond 1600 Двухкомпонентная эпоксидная смола для склеивания Bond 2000 Акриловая адгезивная связка быстрого отверждения Высокая прочность

Подробнее

ГЛАВА 6 ИЗМЕРЕНИЕ ИСПЫТАНИЯ НА ИЗНОС

84 ГЛАВА 6 ИЗМЕРЕНИЕ ИСПЫТАНИЙ НА ИЗНОС Износ — это процесс удаления материала с одной или обеих из двух твердых поверхностей в твердотельном контакте.Поскольку износ является явлением поверхностного удаления и происходит в основном

Подробнее

Данные о продукте Green Thread

Green Thread Данные о продукте Области применения Разбавленные кислоты Каустические вещества Производимая вода Промышленные стоки Горячая вода Возврат конденсата Материалы и конструкция Все трубы, изготовленные методом намотки нитями с использованием

Подробнее

Инструментальная сталь для холодных работ AISI O1

ФАКТЫ О СТАЛИ AISI O1 Инструментальная сталь для холодных работ Здесь начинается отличное оснащение! Эта информация основана на нашем текущем уровне знаний и предназначена для предоставления общих сведений о наших продуктах и ​​их

Подробнее

Раздел 4: NiResist Iron

Раздел 4: Железо NiResist Раздел 4 Описание марок Ni-Resist…4-2 201 (Тип 1) Ni-Resist … 4-3 202 (Тип 2) Ni-Resist … 4-6 Списки акций … 4-8 4-1 Ni-Resist Описание марок Ni-Resist Dura-Bar

Подробнее

Североамериканский нержавеющий

Плоские нержавеющие изделия в Северной Америке Лист нержавеющей стали марки 310S (S31008) / EN 1.4845 Введение: SS310 — это высоколегированная аустенитная нержавеющая сталь, предназначенная для работы при повышенных температурах.

Подробнее

Силановые связующие агенты

Силановые связывающие агенты Содержание Введение 2-4 Характеристики 5 Аминофункциональные силановые связывающие агенты 6 Эпоксидно-функциональные силановые связывающие агенты 6 Винилфункциональные силановые связывающие агенты 7

Подробнее

Подшипники скольжения из PTFE 04/10 149

10.04.149 1.0 ОБЩАЯ ИНФОРМАЦИЯ В широком диапазоне применений подшипники скольжения из PTFE превосходят обычные расширительные пластины, ролики и опоры коромысла. Они обслуживают нефтехимический завод,

Подробнее

APE T углепластик Аслан 500

Полимерная лента, армированная углеродным волокном (CFRP), используется для структурного усиления бетона, кирпичной кладки или деревянных элементов с использованием техники, известной как укрепление на поверхности или усиление NSM.Использование CFRP

Подробнее

ОБРАБОТКА РАЗЛИЧНЫХ МАТЕРИАЛОВ

4 ОБРАБОТКА РАЗЛИЧНЫХ МАТЕРИАЛОВ СОДЕРЖАНИЕ ГЛАВЫ 4.1 Процессы формовки полимеров Процессы производства полимеров 4.2 Технология обработки резины Переработка резины в готовое изделие

Подробнее

Пропиточная машина

Пропиточная машина Dasan Engineering произвела машину для нанесения полимерного покрытия и ламината для композитных и изоляционных материалов в дополнение к пропиточной и сушильной машине, благодаря высокой эффективности

Подробнее

Термопластичные композиты

Термопластические композиты Определение По определению, термопласт — это материал на основе полимера (высокомолекулярного соединения), которому можно придать форму в жидком (вязком) состоянии при температуре выше

Подробнее

Оборудование для литья под давлением

Процесс литья под давлением Оборудование для литья под давлением Классификация термопластавтоматов 1.Машина для литья под давлением обрабатывающая способность стиль зажимная сила (кН) теоретический объем впрыска (см3)

Подробнее

Хорошие доски = результаты

Раздел 2: Изготовление печатных плат и паяемость Хорошие платы = результаты Изготовление плат — это один из аспектов индустрии производства электроники, о котором инженеры по сборке SMT часто мало знают.

Подробнее .

No related posts.

Навигация по записям

Предыдущая запись:

Про бетономешалку: Мультик про бетономешалку для маленьких детей смотреть онлайн

Следующая запись:

Aic xj 277 отзывы – Ой!

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Рубрики

  • Дизайн
  • Дом
  • Интерьер
  • Кухня
  • Стиль
  • Эко
  • Разное
Copyright © 2019 "DoorsStyle" Все правва защищены. Политика конфиденциальности right