Теплопроводность облицовочного кирпича: Разновидности кирпича
Разновидности кирпича
Полнотелый кирпич
Полнотелый кирпич — это обычный рядовой кирпич, который применяется для строительства несущих стен, колонн, столбов, цокольных этажей и иных конструкций с дополнительной нагрузкой. Он обязан иметь высокую прочность и хорошую устойчивость к морозам. По государственному стандарту самой высокой морозостойкостью должен обладать кирпич F50, но современные производители выпускают и F75. В большинстве случаев для строительства используется полнотелый кирпич с маркой прочности 75–300, по морозостойкости 15–50, пористостью 8%, плотностью 1600–1900 кг/м3 и коэффициентом теплопроводности 0,6–0,7 Вт/мС. Из-за последнего показателя внешние стены сооружения требуют дополнительной теплоизоляции. Масса кирпича стандартного размера колеблется от 3,5 до 3,8 кг. В 1 м³ хранится 480 кирпичей.
Пустотелый кирпич
Пустотелый (щелевой) кирпич, в отличие от полнотелого, имеет внутренние пустоты с различными формами (круглыми, овальными, квадратными и прямоугольными), объемами (13% до 50% внутреннего объема) и ориентациями (вертикальными или горизонтальными).
Пустотелый (щелевой) кирпич имеет плотность 1000–1450 кг/м3, морозостойкость 10–15 циклов, пористость 6–8%, коэффициент теплопроводности 0,3–0,5 Вт/Мс. По прочности выделяют марки от М75 до М250. Цветовая гамма различна.
Поризация — это второй способ изготовления пустотелого кирпича, при котором из готовой смеси во время обжига исчезают легкосгораемые элементы (торф, опилки, уголь, солома) и образуются маленькие пустоты. Произведенный кирпич не только легок по весу, но и имеет отличные тепло- и звукоизоляционные свойства. Применяется в основном для строительства наружных и внутренних стен. Из-за наличия пяти рядов пустот снижается расход кладочного материала на 20%. Также увеличивается скорость кладки и уменьшается количество растворных швов. Маленькая плотность помогает снизить нагрузку на фундамент.
Пустотелый поризованный кирпич имеет плотность 1100–1150 кг/м3, морозостойкость 15–50 циклов, пористость 6–10%, коэффициент теплопроводности 0,25–0,25 Вт/Мс. По прочности выделяют марки от М50 до М150. В основном красных оттенков.
Облицовочный кирпич
Облицовочный кирпич — это кирпич правильной формы с ровной глянцевой поверхностью. Используется для кладки наружных и внутренних стен с высокими требованиями к поверхности. Фасадный кирпич обычно является пустотелым, поэтому обладает высокими теплоизоляционными характеристиками. Разнообразная цветовая гамма получается за счет правильно подобранных глиняных смесей, сроков и температуры обжигания. В связи с этим рекомендуется закупать кирпичи из одной партии сразу же, иначе могут не совпасть цвета.
Высокая цена оправдывается долговечностью нового фасада. При декорировании внутренних стен стоит обращать большое внимание на обрабатывание швов. Размеры обычного фасадного кирпича соответствуют размерам полнотелого — 250×120×65 мм.
Облицовочный кирпич имеет плотность 1300–1450 кг/м3, морозостойкость 25–75 циклов, пористость 6–14%, коэффициент теплопроводности 0,3–0,5 Вт/Мс. По прочности выделяют марки от М75 до М250. Цветовая гамма разнообразна.
Цветной фигурный кирпич
Цветной фигурный кирпич — это вид облицовочного кирпича с особой формой, неровной поверхностью и особенным цветом. Форма камня может иметь криволинейные грани, округленные или срезанные углы и ребра. Рельеф поверхности либо повторяющийся, либо обработан под другой материал (мрамор, антик, дерево и прочее). Именно за эти свойства фигурный кирпич ценится при строительстве таких сложных элементов, как арки и круглые колонны. Также им выполняется декор наружных стен.
Крупноформатный блок
Крупноформатный блок обладает отличными тепло- и звукоизоляционными свойствами, поддерживает благоприятный микроклимат в помещении и повышает производительность труда. При толщине стены в 640 мм тепло сохраняется так же, как и в стене из обычного кирпича в 770 мм. Плотность поризованной керамики на 30% ниже, чем плотность пустотелого кирпича, что позволяет значительно снизить нагрузку на фундамент. Из-за больших размеров блока увеличивается скорость возведения здания, сокращается количество кладочных швов и расход раствора. Успешно применяется в малоэтажном строительстве для сооружения внешних и внутренних перегородок.
Силикатный кирпич
Силикатный кирпич — это кирпич, вырезанный из силикатного автоклавного бетона. При его производстве в состав добавляют 89% извести, 10% песка и незначительное количество различных добавок. Главными достоинствами силикатного кирпича считается низкая цена и разнообразная цветовая гамма. А к недостаткам можно отнести большой вес, маленькую прочность, плохую водостойкость и теплопроводность. Используется в основном для строительства внешних и внутренних стен. По своей универсальности намного уступает керамическому кирпичу.
Силикатный кирпич имеет коэффициент теплопроводности 0,38–0,70 Вт/мС, морозостойкость 15–35 циклов. По прочности выделяют марки от М125 до М150.
Клинкерный кирпич
Клинкерный кирпич используется для облицовки фасадов, цоколей, покрытия дорог, улиц и дворов. В качестве преимуществ можно отметить долговечность материла, так как инородным телам очень сложно проникнуть в состав материала, высокую плотность и разнообразие расцветок. Но и есть и минусы — это плохая теплопроводность и высокая цена. Производство кирпича включает в себя процессы прессования сухой красной глины и обжига до спекания.
Клинкерный кирпич имеет плотность 1900–2100 кг/м3, морозостойкость 50–100 циклов, пористость до 5%, коэффициент теплопроводности 1,16 Вт/мС. По прочности выделяют марки от М400 до М1000. Цветовая гамма различна.
Таблица теплопроводности кирпича, его плотность, морозостойкость и теплоемкость
Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:
- Силикатный – рядовой, лицевой, пустотелый, полнотелый.
- Керамический – жаростойкий и все разновидности предыдущего вида.
- Клинкерный – для облицовки фасадов.
Оглавление:
- Коэффициент теплопроводности
- Что такое теплоемкость?
- Значение морозостойкости
Теплотехнические характеристики
Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.
Коэффициент теплопроводности
Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.
Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:
- ≤ 0.20 – высокая;
- 0.2 < λ ≤ 0.24 – повышенная;
- 0.24 — 0.36 – эффективная;
- 0.36 — 0.46 – условно-эффективная;
- ˃ 0.46 – обыкновенная (малоэффективная).
Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений.
Вид | λ, Вт/м°C |
Красный полнотелый | 0,56 ~ 0,81 |
-//- пустотелый | 0,35 ~ 0,87 |
Силикатный кирпич полнотелый | 0,7 ~ 0,87 |
-//- пустотелый | 0,52 ~ 0,81 |
Теплопроводность красного изделия ниже, чем у силикатного.
Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:
- Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
- Полное тепловое сопротивление – способность противостоять передаче тепла.
Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.
Теплоемкость
Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:
- Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
- Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени.
Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделия | Удельная теплоемкость, Дж/кг*°С |
Красный полнотелый | 880 |
пустотелый | 840 |
Силикатный полнотелый | 840 |
пустотелый | 750 |
Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:
- Применение теплоизоляции.
- Нанесение штукатурки.
- Использование пустотного кирпича или камня (исключено для фундамента здания).
- Кладочный раствор с оптимальными теплотехническими параметрами.
Таблица с характеристиками различных видов кладок. Использованы данные СП 50. 13330.2012:
Плотность, кг/м³ | Удельная теплоемкость, кДж/кг*°С | Коэффициент теплопроводности, Вт/м*°C | |
Обыкновенный глиняный кирпич на различном кладочном растворе | |||
Цементно-песчаный | 1800 | 0.88 | 0.56 |
Цементно-перлитовый | 1600 | 0.88 | 0.47 |
Силикатный | |||
Цементно-песчаный | 1800 | 0.88 | 0.7 |
Пустотный красный различной плотности (кг/м³) на ЦПС | |||
1400 | 1600 | 0.88 | 0.47 |
1300 | 1400 | 0.88 | 0.41 |
1000 | 1200 | 0.88 | 0.35 |
Морозостойкость кирпичной кладки
Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.
Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.
Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.
Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:
- Применение паро- и гидроизоляции.
- Обработка кладки гидрофобными составами.
- Контроль, своевременное исправление дефектов.
- Надежная гидроизоляция фундамента.
От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.
Теплопроводность кирпича
Мы продолжаем разбирать технические характеристики кирпича. Мы уже рассмотрели такие характеристики как морозостойкость и марка прочности . Сегодня речь о теплопроводности.
Итак, разберёмся сначала с тем, что говорит нам действующий кирпичный ГОСТ 530-2012. Теплопроводность обозначают буквой лямбда, а измеряют Вт/(мС). Не будем вдаваться в технические тонкости, по сути, нам надо знать только цифры. Мы приведём их в самом начале, а после разберём, что они значат.
Теплопроводность строительного кирпича и блоков.
Для стеновых материалов теплопроводность — ключевой показатель. Ведь в современных домах задачу сохранения тепла берёт на себя строительный кирпич и утеплитель, и они должны в паре работать на удержание тепла и поддержание комфортного микроклимата в Вашем доме.

Теплопроводность лицевого кирпича
У лицевого кирпича множество важных характеристик, которые Вам обязательно нужно учесть при выборе. О них у нас есть отдельные статьи (морозостойкость, марка прочности и несколько общих обзоров разных видов лицевого кирпича). Но вот теплопроводность лицевого кирпича не должна Вас волновать. Проектировщики и архитекторы давно пришли к пониманию того, что разные функции должны выполнять разные материалы.Теплопроводность строительного кирпича
Строительный кирпич (речь о современном) отлично сохраняет микроклимат и тепло в доме. Но посмотрите на его характеристики. Шикарная теплопроводность, но относительно низкая прочность и большое водопоглощение. Малая прочность блоков (М100 и ниже, чаще всего М50 и М75) не проблема благодаря специально разработанной форме: кирпич хорошо держит нагрузку сверху, но не сбоку. Водопоглощение строительного кирпича имеет право быть высоким: он будет закрыт лицевой стеной и не соприкоснётся с дождями.
Предыдущая статья Следующая статья
Теплопроводность кирпича: что влияет на показатели
Качество дома оценивается по многим факторам, одним из которых является способность удерживать тепло. Теплопроводность кирпича влияет на этот показатель. Поэтому перед началом строительства или утепления здания учитывается это свойство стройматериала. Популярным и доступным средством для возведения стен является керамический кирпич. Так как большинство его видов обладают слабой теплоизоляцией, то этот недостаток компенсируется с помощью термоизоляционных конструкций.
Что обозначает показатель?
Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.
Вернуться к оглавлениюСвойства различных типов блоков
Красный керамический
В составе такого материала присутствует глина.Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.
Этот вид стройматериалов является популярным и доступным. Состоит из глины и других добавок. Этими строительными материалами возводится несущая конструкция, облицовываются или утепляются стены старого дома, а также сооружаются заборы и укладывается фундамент. Изделие отличается высокой прочностью и долговечностью. Теплопроводность керамического кирпича зависит от разновидности. Лучшим вариантом для утепления дома является использование пустотелого кирпича. Чем больше степень пустотелости, тем меньше изделие способно проводить тепло. Кирпичная стена может укладываться в один или два ряда. Кроме этого, стройматериал обладает такими свойствами, как:
- прочность;
- морозостойкость;
- огнеупорность;
- звукоизоляция.
Клинкерный
Эта разновидность красного керамического стройматериала чаще всего применяется для облицовочных работ, укладки тротуаров. Это обусловлено его высокой теплопроводностью. Она достигает 1,16 Вт/м°С. Уменьшения этого показателя удается достичь у пустотелых образцов. При строительстве дома из таких блоков необходимо использовать дополнительные методы утепления. Большая плотность изделия придает ему дополнительной влаго- и морозостойкости. Облицовочный кирпич широко используется для декоративной отделки домов снаружи и внутри.
Характеристика шамотного
Из шамотного материала получаются хорошие камины.Так как этот вид стройматериала характеризуется высокой способностью проводить тепло, его чаще применяют при возведении каминов, печей. Этим обусловлено его название «печной кирпич». В таком случае теплопроводность шамотного кирпича играет решающую роль в выборе материалов для стройки. Подобные свойства помогают экономить энергию для обогрева помещения. Кроме этого, шамотный кирпич обладает такими свойствами, как:
- огнеупорность;
- устойчивость к перепадам температуры;
- высокая теплопроводность;
- легкий вес;
- устойчивость к воздействию щелочей и ряда кислот;
- прочность;
- эстетичность.
Силикатный
Этот вид стройматериала ценится прочностью, экологичностью и звуконепроницаемостью. Но теплопроводность кирпича этого типа не завышена, поэтому помещения из него требуют дополнительного утепления. Силикатные блоки делают из смеси песка и извести с добавлением связующих компонентов, которые прессуются и впоследствии подвергаются обжигу. Самым распространенным является изделия марки М100. Различают рядовой и лицевой силикатный кирпич. Каждый из них имеет свою сферу применения. Кроме этого, материал способен впитывать влагу, что не позволяет использовать его в местах с повышенной влажностью и при строительстве фундамента.
Вернуться к оглавлениюКакая теплопроводность изделий?
У клинкерного материала этот показатель наивысший.От состава, способа изготовления и пустотелости зависят характеристики стройматериалов. Коэффициент теплопроводности кирпича характеризует его способность проводить тепло. Клинкерные изделия отличаются высоким уровнем, а керамические материалы — самым низким в сравнении с другими видами. Характеристика разновидностей изделия указана в таблице.
Вид | Показатель, Вт/м°С | |
---|---|---|
Керамический | Полнотелый | 0,5—0,8 |
Щелевой | 0,34—0,43 | |
Поризованный | 0,22 | |
Клинкерный | 0,8—1,16 | |
Шамотный | 0,6 | |
Силикатный | Полнотелый | 0,7—0,8 |
Пустотелый | 0,4—0,66 |
Что влияет на показатели?
Для максимально эффективной теплоизоляции изделие должно содержать много пустот.Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.
Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:
- Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
- Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
- Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
- Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.
При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.
Теплопроводность кирпича и коэффициент теплопроводности
Качественный дом должен быть теплым. Чтобы решить из какого материала лучше построить жилье нужно проанализировать величину сопротивления теплового потока материала стен. Традиционно в России отдают предпочтение строениям из кирпича, но оправдано ли это. Какова его теплопроводность и стоит ли строить кирпичное жилье для постоянного проживания на самом деле.
Что такое теплопроводность?
На стадии проектирования любого дома, солидного коттеджа или дачной постройки наряду с архитектурными и конструктивными решениями, закладываются технические и эксплуатационные характеристики строения. Теплотехнические значения постройки напрямую зависят от материалов, из которых она возведена.
В соответствии со СНип 23-01-99, СНиП 23-02-2003, СНип 23 -02-2004 разработаны
технологии обеспечения климатологии, тепловой защиты жилья, а так же правила их проектирования. Созданы таблицы теплопроводности, полезные при определении критериев материалов для создания благоприятного микроклимата в зависимости от их показателей теплопроводности.
Показатели теплопроводности строительных материалов
Под теплопроводностью понимается физический процесс передачи энергии от нагретых частиц к холодным до наступления теплового равновесия, до того как сравняются температуры. Для жилого строения процесс теплопередачи определяется время выравнивания температуры в нутрии его и снаружи. Соответственно, чем длительнее процесс выравнивания температур (зимой – охлаждения, летом – нагревания), тем выше показатель (коэффициент) теплопроводности.
Коэффициент это показатель количества тепла, которое за единицу времени теряется, проходя через поверхность стен. Чем выше, тем больше теряется тепла, чем ниже, тем лучше для жилого дома.
Важно! Задача проектирования в том, чтобы подобрать материалы с наиболее низким коэффициентом теплопроводности для возведения всех строительных конструкций.
Что влияет на коэффициент теплопроводности?
Строительные материалы, кирпич, бетон, блоки, дерево, панели имеют разную теплопроводность. Но физические свойства этих материалов, влияющие на показатели проводимости тепла, одинаковы. Вот они:
- Плотность;
- Пористость;
- Структура пор;
- Влажность.
Как данные параметры влияют на проводимость тепла. Плотность материала характеризуется взаимодействием частиц, передающих тепловую энергию, чем плотность выше, тем потери тепла больше. Пористость материала способствует разрушению его однородности, тепло задерживается порами, в которых воздух, а теплопроводность воздуха при 0°С равна 0,02 Вт/м*. Чем больше пористость кирпича или иного материала, тем ниже коэффициент теплопроводности. Если структура пол малого размера и закрытого типа, потери тепла снижаются. Повышенная влажность материала снижает (ухудшает) показатель, так как сухой воздух вытесняется влажным.
В строительной профессиональной практике коэффициент определяется формулами, для обычного понимания необходимо понимать, что проводимость тепловой энергии – величина нормируемая, конструкция строения должна представлять собой монолитное сооружение, возведенное из материалов естественной влажности, требуемой толщины, как показано на картинке.
Полезно знать, что все строительные материалы делятся на два класса:
- те, из которых возводят конструкцию, каркас сооружения;
- те, которыми производят утепление конструкции.
Материалы для несущих конструкций характеризуются высоким коэффициентом теплопроводности. Самым холодным среди прочих является железобетон с коэффициентом – 1,29. Самый теплый материалом для стен пенобетон– 0,08. Интересно, что кирпич, согласно присвоенным показателям неплохо держит тепло:
Пустотелый керамический | 0,35 – 0,41 |
Красный глиняный | 0,56 |
Силикатный | 0,7 |
Силикатный с тех. | 0,66 |
Силикатный щелевой | 0,4 |
Керамический с тех. пустотами | 0,57 |
Керамический щелевой | 0,34 – 0,43 |
Поризованный | 0,22 |
Теплая керамика | 0,11 |
Керамический блок | 0,17 – 0,21 |
Клинкерный | 0,8 – 0,9 |
Таким образом, таблица подсказывает, какой кирпич выбрать для строительства своего дома.
Важно! Теплопроводность только один из большого числа технических показателей строительного материала, принимать во внимание которые необходимо при проектировании и возведении будущего дома.
Кроме того, кирпич от разных производителей также различается по техническим и физическим, а также ценовым показателям.
Виды кирпича и их теплопроводность
Из вышеприведенной таблицы видно, что существует несколько видов кирпича, которые помимо характеристик теплопроводности имеют разные показатели экологической безопасности, устойчивости к огню, морозостойкости. Каждый вид имеет свои показатели прочности, долговечности. Все кирпичи можно разделить по материалу изготовления на два типа:
- керамический, изготовленный из глины с разными добавками;
- силикатный, изготовленный из кварцевого песка и воды.
Каждый вид кирпича имеет градации по назначению:
- строительная, для возведения поверхностей;
- специальная, для обустройства поверхностей соприкасающихся с высокими температурами, печь, печная трубе, камин;
- облицовочная, для отделки фасадов зданий.
Теплопроводность пустотелого кирпича, объем пустот, которого составляет 45% от общей массы, меньше. Его можно использовать для возведения несущих стен и перегородок, важно, чтобы раствор, на который его кладут, был густым и не забивал полости.
Полнотелый кирпич имеет не более 13% пустот, хорош для возведения колон, столбов и прочих опорных конструкций. Такой материал можно использовать и в строительстве жилых домов, стены придется в таком случае утеплять.
Клинкерный кирпич имеет прекрасные характеристики теплопроводности, лучшее использование – возведение утепленных конструкций.
Повысить коэффициент теплопроводности можно созданием воздушных зазоров, теплоизоляцией, естественной циркуляцией воздуха. Чтобы дом был теплым без дополнительного использования теплоизоляционных материалов нужно увеличивать ширину стены. Но в таком случае толщина стены должна достигать полуметра. Использование современных утеплителей, с нужными значениями теплопроводности, позволит построить теплый дом для комфортного проживания.
Теплопроводность кирпича, коэффициенты для разных видов материала
Оглавление:
- Виды кирпичей
- Назначение и отличительные признаки материала
- Что такое теплопроводность
Новые материалы не могут не вызывать восхищение своими характеристиками и возможностями. Преимущества технологий строительства с их помощью неоспоримы. Искусственные и комбинированные строительные материалы превосходят традиционные сразу по нескольким важнейшим параметрам, зачастую – в несколько раз. Однако, традиционные материалы нельзя сбрасывать со счетов: кирпич, к примеру, был и остается востребованным.
Большинство зданий построено из кирпича: в этом не сложно убедиться. То есть, о способности этого материала успешно противостоять атмосферным явлениям, знают все.
Механическая прочность и долговечность этого материала также известна, как и экологическая безопасность. Кроме того, кирпич обладает хорошими тепло- и звукоизоляционными свойствами, морозостойкостью. Все эти качества делают его одним из лучших строительных материалов.
Виды кирпичей
Раньше этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый. Иногда встречался керамический пустотелый. Современные керамические кирпичи бывают разных цветов и оттенков: желтые, кремовые, розовые, бордовые. Фактура их также может быть различной. Однако, по способу изготовления и составу они по-прежнему подразделяются на керамический и силикатный.
Общего у них, кроме геометрических параметров, нет ничего. Керамический состоит из обожженной глины (с различными добавками), а силикатный изготавливается из извести, кварцевого песка и воды. Эксплуатационные характеристики обоих видов регламентируются разными нормативными документами, что обязательно учитывается в строительной отрасли.
Большей популярностью пользуется керамический кирпич. Его разновидности: полнотелый, пустотелый, облицовочный с различной фактурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и пригодным для возведения любых строений.
Назначение кирпичей различных видов и их отличительные признаки
Кирпич по назначению подразделяют на специальный, строительный и облицовочный. Для кладки стен применяется строительный, для облагораживания фасадов – облицовочный, а в особых случаях – специальный (например, для кладки печи, камина или печной трубы).
Полнотелый кирпич содержит не более 13% пустот: его используют для возведения стен (внешних и внутренних), столбов, колонн и так далее. Конструкции, построенные из такого материала, способны нести дополнительную нагрузку благодаря высокой прочности на сжатие, на изгиб, хорошей морозостойкости керамического полнотелого кирпича. Теплоизолирующие свойства зависят от пористости, от нее же зависит и водопоглощение, способность материала к сцеплению с кладочным раствором. Данный материал обладает не слишком хорошим сопротивлением к теплопередаче, в связи с чем стены жилых строений необходимо сооружать достаточной толщины или утеплять дополнительно.
У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия, поэтому его вес меньше, чем у полнотелого. Он пригоден для строительства легких перегородок и наружных стен, им заполняют каркасы многоэтажных зданий. Пустоты в нем могут быть как сквозными, так и закрытыми с какой-либо стороны. Форма пустот бывает круглой, квадратной, овальной, прямоугольной. Располагаются они вертикально и горизонтально (последний вариант менее удачен, так как такая форма – менее прочна).
У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия.
Пустоты позволяют экономить довольно много материала, из которого изготавливают кирпич. Кроме того, это значительно повышает его теплоизолирующие свойства. При этом важно, чтобы консистенция раствора была такой густоты, чтобы воздушные полости им не заполнялись.
Облицовочный кирпич применяют, соответственно, для облицовки зданий. Обычно, его размеры такие же, что и у стандартного, но в продаже есть и изделия с меньшей шириной. Чаще всего он изготавливается пустотелым, что определяет его высокие теплотехнические характеристики.
Среди специальных кирпичей чаще всего распространены огнеупорный (печной) и теплоизолирующий. И тот, и другой применяются для возведения каминов и печей (в том числе и мартеновских). Они изготавливаются из специальной, шамотной глины, но имеют разное назначение. Огнеупорный призван выдерживать температуры, превышающие 1600 °С, а теплоизолирующий – для предотвращения нагревания внешних стенок печей и потери тепла. Если возводить стены из этого материала, то они будут хорошо сохранять тепло. Но слабая прочность материала позволяет лишь заполнять им простенки.
Клинкерным кирпичом облицовывают цоколи зданий. Он обладает высокой морозостойкостью и механической прочностью благодаря применению тугоплавких глин при их изготовлении. Обжигание сырца производится при более высоких температурах, чем обычно.
Что такое теплопроводность
Этот термин обозначает способность материала передавать тепловую энергию. Эту способность, в данном случае, выражает коэффициент теплопроводности кирпича. У клинкерного этот показатель составляет порядка 0,8… 0,9 Вт/м К.
Силикатный обладает меньшей теплопроводностью и в зависимости от количества пустот, в нем содержащихся, подразделяется на: щелевой (0,4 Вт/м К), с техническими пустотами (0, 66 Вт/м К), полнотелый (0,8 Вт/м К).
Керамический является еще более легким, вследствие чего данный показатель у него еще более низкий. Для полнотелого кирпича он находится в пределах 0,5… 0,8 Вт/м К, для щелевого – 0,34… 0,43 Вт/м К и для поризованного – 0,22 Вт/м К. Кирпич пустотелый характеризуется коэффициентом теплопроводности, равным 0,57 Вт/м К. Данный показатель не постоянен и меняется в зависимости от пористости материала, количества и расположения пустот.
Утверждение, что кирпич обладает высокой теплопроводностью, не совсем корректно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных качеств полнотелых кирпичей и теплоизолирующих свойств пустотелых (а еще лучше – поризованной керамики) позволяет возводить надежные и энергоэкономичные здания.
Теплопроводность кирпича силикатного — обзор одного из основных свойств изделий
Долгие годы силикатный строительный кирпич пользуется огромной популярностью. При этом далеко не все потребители имеют полное представление о данном материале. Поэтому мы решили представить вашему вниманию его техническое описание.
Дома из такого материала смотрятся весьма изысканно
Блок: 1/4 | Кол-во символов: 314
Источник: https://klademkirpich.ru/svojstva/112-teploprovodnost-silikatnogo-kirpicha
Плотность керамического кирпича
Керамические кирпичные блоки производятся из глины, которая проходит обработку при высоких температурных режимах. Показатели плотности различаются в зависимости от разновидности изделия — пустотелой либо полнотелой.
Государственные стандарты предписывают допустимый показатель плотности состава для керамического блока полнотелого от 1600 до 2000 кг/м3. Параметры для кирпичей керамических пустотелых варьируются в пределах от 1100 до 1400 кг/м3 и обусловлены большим числом пор в составе.
Блоки керамические подходят для возведения устойчивых конструкций — вспомогательных либо несущих. Полнотелые кирпичи за счет отсутствия большого числа пустот имеют повышенную прочность и массу. Подходят для конструкций, подверженных постоянным нагрузкам.
Керамические кирпичи пустотелые применяют при возведении жилых зданий. Для многоквартирных домов важна невысокая плотность, позволяющая сохранять тепло в помещениях. При определении теплосберегающих качеств материала необходимо обращать внимание на наличие специальных щелей. При возведении крупных объектов рекомендована проверка каждой партии кирпичей на подтверждение госстандартов.
Блок: 2/7 | Кол-во символов: 1171
Источник: https://kubkirpich.ru/o-kirpiche/plotnost.html
Коэффициент теплопроводности
Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.
Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:
- ≤ 0.20 – высокая;
- 0.2 < λ ≤ 0.24 – повышенная;
- 0.24 — 0.36 – эффективная;
- 0.36 — 0.46 – условно-эффективная;
- ˃ 0.46 – обыкновенная (малоэффективная).
Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.
Вид | λ, Вт/м°C |
Красный полнотелый | 0,56 ~ 0,81 |
-//- пустотелый | 0,35 ~ 0,87 |
Силикатный кирпич полнотелый | 0,7 ~ 0,87 |
-//- пустотелый | 0,52 ~ 0,81 |
Теплопроводность красного изделия ниже, чем у силикатного.
Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:
- Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
- Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.
Теплоемкость
Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:
- Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
- Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделия | Удельная теплоемкость, Дж/кг*°С |
Красный полнотелый | 880 |
пустотелый | 840 |
Силикатный полнотелый | 840 |
пустотелый | 750 |
Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:
- Применение теплоизоляции.
- Нанесение штукатурки.
- Использование пустотного кирпича или камня (исключено для фундамента здания).
- Кладочный раствор с оптимальными теплотехническими параметрами.
Таблица с характеристиками различных видов кладок. Использованы данные СП :
Плотность, кг/м³ | Удельная теплоемкость, кДж/кг*°С | Коэффициент теплопроводности, Вт/м*°C | |
Обыкновенный глиняный кирпич на различном кладочном растворе | |||
Цементно-песчаный | 1800 | 0.88 | 0.56 |
Цементно-перлитовый | 1600 | 0.88 | 0.47 |
Силикатный | |||
Цементно-песчаный | 1800 | 0.88 | 0.7 |
Пустотный красный различной плотности (кг/м³) на ЦПС | |||
1400 | 1600 | 0.![]() | 0.47 |
1300 | 1400 | 0.88 | 0.41 |
1000 | 1200 | 0.88 | 0.35 |
Морозостойкость кирпичной кладки
Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.
Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.
Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.
Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:
- Применение паро- и гидроизоляции.
- Обработка кладки гидрофобными составами.
- Контроль, своевременное исправление дефектов.
- Надежная гидроизоляция фундамента.
От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.
Блок: 2/2 | Кол-во символов: 5675
Источник: http://stroitel-lab.ru/koefficienty-morozostojkosti-teploemkosti-i-teploprovodnosti-kirpicha.html
Что представляет собой силикатный кирпич
Для начала, давайте разберемся, что собой представляет данный материал.
Силикатный кирпич: состав и основные свойства
Силикатные кирпичи – изделия, изготовленные из смеси песка, извести и воды. Также при производстве используются шлак, зола и иные взаимозаменяемые компоненты.
Состав сырья непосредственно влияет на итоговые характеристики изделий, приуменьшая либо наоборот, преувеличивая их.
Ориентировочный состав силикатного кирпича
Основные требования к изделиям изложены в следующей технической документации:
- ГОСТ 379-95 Кирпичи и камни силикатные
- ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича
- СНиП -87 Несущие и ограждающие конструкции
Рассмотрим таблицу, отражающую основной набор свойств и качеств изделий. Таблица 1. Характеристики силикатного кирпича:
Наименование свойства | Значение и |
Морозостойкость | В соответствии с ГОСТ, морозостойкость лицевых изделий должна быть не менее 25. Производители утверждают, что силикатный кирпич способен выдержать до 100 циклов замораживания и оттаивания. |
Прочность и плотность | Кирпич обладает достаточно высокими показателями, которые позволяют использовать его при возведении зданий различной этажности. Числовое значение марки прочности варьируется в пределах от 75 до 300. В зависимости от средней плотности, выделяют кирпичи: плотные, характеризующиеся показателем более 1500 кг/м3 и пористые, обладающие показателем до 1500 кг/м3. |
Водопоглощение | Показатель составляет от 6 до 16%. В сравнении с другими материалами, предназначенными для возведения стен, достаточно неплохой результат.![]() |
Паропроницаемость | 0,11. Данная способность отвечает за установление благоприятного микроклимата внутри помещения. |
Огнестойкость | Кирпич не горит, и не вступает во взаимодействие с огнем. |
Экологичность | Изделия не содержат в своем составе вредных или ядовитых веществ. Они абсолютно безопасны для окружающей среды и человека. |
Ценовая категория | Средняя. Зависит от типа и вида кирпича, региона. |
Виды материала и область применения
Силикатный кирпич имеет несколько классификаций, основанных на тех или иных свойствах и факторах. Рассмотрим их более подробно.
В соответствии с составом компонентов, материал бывает:
- Известково-зольный, содержащий в себе золу в количестве 75-80% и известь, в количестве – 20-25%.
- Известково-шлаковый. Характеризуется наличием в составе легкого шлака вместо песка, совмещенного с известью.
- Известково-песчаный.
Наиболее популярный на производстве вариант. Такие изделия содержат песок и известь. Причем первый, в количестве — до 93%.
В соответствии с ГОСТ, стандартным размером кирпича является- 250*120*65, именуют такие изделия — одинарными.
Одинарный кирпич
Также возможен выпуск утолщенного варианта, толщиной в 88 мм. В конструкционном отношении, силикатный кирпич может быть полнотелым и пустотелым. Полнотелые изделия – более тяжелые по массе, более прочные и обладающие большим коэффициентом теплопроводности.
Полнотелый кирпич
Пустотелые, в свою очередь, могут быть представлены в нескольких вариантах, в зависимости от количества пустот, их формы и доли объема:
- 14-пустотные изделия. Диаметр пустот – 30-32 м, пустотность -28-30%;
- 11-пустотные изделия. Диаметр пустот -27-32 мм, пустотность – 20-25%;
- 3-пустотные изделия. Диаметр пустот – 52 мм, пустотность-15%.
Кирпич силикатный 3-х пустотный, фото
Кирпич силикатный 11-ти пустотный
На переднем плане — 14-пустотный
Обратите внимание! ГОСТ допускается выпуск и иных вариантов изделий, при этом обязательно соблюдение всех технических требований к основным показателям, таким как теплопроводность, морозостойкость, прочность.
Наличие пустот влияет на коэффициент теплопроводности, а также на расход раствора при возведении стены.
В соответствии с назначением, силикатный кирпич может быть:
- Рядовой;
- Лицевой.
Первый вид используется при возведении стен и перегородок. Нуждается в последующей отделке. Технической документацией допускается шероховатость поверхности, наличие небольшого процента сколов и отбитостей.
Облицовочный, или лицевой кирпич, отличается особо строгими требованиями к внешнему виду. Поверхность его – гладкая, декоративная, может иметь фактуру. Такой кирпич должен обладать двумя декоративными сторонами — тычковой и ложковой, однако наличие одной – допускается по договоренности с потребителем.
Кирпич силикатный облицовочный фактурный
В зависимости от цвета, кирпич выделяют:
- Окрашенный;
- Неокрашенный.
Неокрашенные изделия имеют белый либо слегка сероватый оттенок. Окрашенный – колеруются после затвердения, либо на стадии замеса раствора, путем добавления красителей.
В целом, у силикатного кирпича достаточно широкая сфера применения. Его используют при:
- Мало- и многоэтажном строительстве, возведении производственных и жилых зданий, садовых домиков;
- Устройстве вентканалов;
- Возведении перегородок, заборов и многое другое.
Забор из силикатного кирпича
Здание из силикатного кирпича
Дачный дом из силикатного кирпича
Исключается возможность использования материала при строительстве цоколя, более приемлемым вариантом считаются керамические изделия.
Блок: 2/6 | Кол-во символов: 5183
Источник: http://iz-kirpicha.su/harakteristiki/teploprovodnost/teploprovodnost-kirpicha-silikatnogo-236
Особенности
Теперь настало время познакомиться с главными особенностями этого материала. Их целесообразно разделить на положительные и отрицательные.
Достоинства
- Ключевое преимущество силиката над другими материалами – это низкая цена. Данный факт объясняется более простой системой производства и дешевым исходным сырьем. Его производственный цикл не более 18 часов, в то время как у керамического кирпича он достигает 6 дней.
- Он обладает повышенной звукоизоляцией, что значительно сокращает расходы при строительстве. Благодаря способности поглощать шумы и вибрацию, он обеспечивает комфортную обстановку в помещения. Как гласит инструкция, он не нуждается в установке дополнительной звукоизоляции.
- Также нельзя не отметить и тот факт, что он прекрасно противодействует агрессивных воздействиям окружающей среды: плесень, бактерии, грибок и т.д. Это избавляет от необходимости наносить антисептики.
- Уже упомянутую широкую цветовую гамму тоже можно занести в актив данного материала. Она позволяет создавать уникальные дизайны фасадов, чем с удовольствием пользуются многие дизайнеры.
Причем он окрашивается полностью, а не только по лицевой стороне.
- Фасады, сделанные из силикатного кирпича не нуждаются в дополнительной отделке, что значительно сокращает временные и финансовые затраты. Данный материал имеет абсолютно законченный вид.
- Повышенная морозостойкость делает силикатный кирпич настоящим бестселлером для регионов с суровым климатом (к примеру, Сибирь). Ему не страшны даже жуткие северные морозы до -65 градусов.
Ключевые характеристики основных разновидностей
Недостатки
Разумеется, нашлось место и отрицательным моментам, пусть их и не так много:
- Ограниченность использования при возведении фундамента и цокольных этажей. Данное ограничение вызвано тем, что воздействие солей, содержащихся в грунтовых водах отрицательно влияет на силикатный кирпич. Он может начать рассыхаться со временем.
- В сравнении с другими аналогами, у него более низкие показатели таких характеристик, как огне- и водостойкость.
Это значительно сокращает его эксплуатационный период.
- В экстремальных условиях данный материал начинает мгновенно терять все свои качества. Так, к примеру, в регионах с частыми дождями не желательного его использовать, так как он довольно быстро начнет рассыхаться.
Совет: силикатный кирпич (стандартный) нельзя использовать для кладки печей и каминов, так как он довольно плохо противостоит высоким температурам. Максимальный нагрев, который он может выдержать – это 550 градусов (если речь идет об улучшенных аналогах), в то время как поверхность печи накаляется до 700.
- Большой вес, что заставляет возводить массивный фундамент. Естественно, любой кирпич имеет внушительную массу, но силикатный выделяется на фоне своих «собратьев».
Составные части силикатного кирпича
На этом список качеств можно закончить. Констатируя все вышесказанное, можно сказать, что силикатный кирпич является превосходным материалом для различных видов наружных работ. К тому же, он обладает отменным соотношением цена-качество, благодаря которому и получил широкое признание в нашей стране.
Блок: 3/4 | Кол-во символов: 3092
Источник: https://klademkirpich.ru/svojstva/112-teploprovodnost-silikatnogo-kirpicha
Перечень материалов, пригодных для утепления стен из силикатного кирпича
Как уже говорилось, понизить коэффициент теплопроводности силикатного кирпича и будущей стены можно при помощи технически верно выполненного утепления поверхности.
Рассмотрим, какие материалы можно использовать, и как происходит процесс работ. Утепление стены из силикатного кирпича можно производить при помощи нескольких материалов.
Воспользуемся таблицей. Таблица 4. Стены из силикатного кирпича: утепление при помощи различных материалов.
Наименование материала | , преимущества и недостатки |
Минеральная (базальтовая) вата | Достаточно популярный материал, обладает низким коэффициентом теплопроводности.![]() Из плюсов можно выделить:
Основные минусы сводятся к следующему:
|
Пенопласт (пенополистирол) | Достоинства:
Недостатки:
|
Керамзит | Достоинств у керамзита много: это и цена, и экологичность, и высокие шумо- и теплоизоляционные показатели.![]() Его используют для утепления стен, возводимых по технологии колодцевой кладки. |
Пенополиуретан | Такой метод утепления считается достаточно дорогостоящим. Напыление требует наличия специализированного оборудования и без помощи профессионалов, обычно, не обойтись. Теплоизоляционные характеристики – высокие. |
Теплая штукатурка | Это-один из самых лучших вариантов. Такие специализированные составы стоят дорого, однако результат может превзойти все ожидания. Сложность также заключается в нанесении, так как смесь очень быстро схватывается. Материал не подвержен горению и устойчив к влаге. |
Блок: 4/6 | Кол-во символов: 2046
Источник: http://iz-kirpicha. su/harakteristiki/teploprovodnost/teploprovodnost-kirpicha-silikatnogo-236
Плотность полнотелого кирпича
Характеристики плотности у полнотелого кирпича высокие. Блоки имеют показатели от 1600 до 1900 кг/см3. На качества влияет небольшая пустотность — не выше 8%, сниженная теплопроводность, которая составляет 0,7 Вт/м°С. Материал износостойкий, долговечный, но плохо сохраняет тепло и отличается большим весом. Поэтому стеновые панели из полнотелых блоков часто дополнительно утепляют.
Наибольшую плотность имеют красные полнотелые кирпичи. Показатель достигает 2100 кг/см3. Сырье оптимально для возведения несущих стеновых панелей, цокольных частей зданий, опорных фундаментов и других конструкций с высокой нагрузкой.
На показатели уплотненности кирпича полнотелого влияют особенности сортов глины, способы и температурные режимы обжига. На полнотелых блоках не выполняют полное глазурование, т.к. высокая плотность снизит паровую проницаемость. При чрезмерном воздействии высоких температур материал сильно сжимается и с трудом поддается обработке. Поэтому специалисты рекомендуют корректировать метод остывания блоков после печи. Кирпичи необходимо поэтапно обрабатывать перегретым паром, затем оставлять на открытом воздухе.
Вычокий уровень прочности при сжатии и невосприимчивость к перепадам температурных режимов, высокий показатель поглощения влаги придают полнотелым изделиям износостойкость и морозостойкость. Характеристики позволяют применять кирпичи для возведения стеновых панелей внутри и снаружи здания, колоннад, опорных конструкций, несущих фундаментов, цокольных этажей.
Блок: 4/7 | Кол-во символов: 1523
Источник: https://kubkirpich.ru/o-kirpiche/plotnost.html
Преимущества и недостатки строений, возведенных из силикатного кирпича
Силикатный кирпич и строения, возведенные из него, обладают рядом иных преимуществ. Из них можно выделить:
- Невысокая стоимость изделий;
- Экологичность материала;
- Хорошая геометрия изделий;
- Высокие эстетические качества;
- Показатель прочности, плотности и морозостойкости – достаточно конкурентные;
- Звукоизоляционные характеристики;
- Разнообразие выбора размеров, цветов и производителей;
- Большое количество вариантов отделки как внешней, так и внутренней;
- Широкая сфера применения материала;
- Возможность произвести кладку самостоятельно, для этого понадобится только инструкция.
Что касается теплопроводности, то, скорее, данный показатель можно отнести к плюсам, так как при этом стоит учесть высокую плотность изделий.
Недостатки заключаются в следующем:
- Материал достаточно тяжелый, особенно, в сравнении с ячеистыми бетонами;
- Влагопоглощение;
- В ассортименте продукции отсутствуют декоративные элементы, что не позволяет расширить архитектурные возможности при использовании материала;
- Ограничение применения в строительстве силикатного кирпича помещений, для которых характерна постоянная влажность. Например, это – баня.
Блок: 5/6 | Кол-во символов: 1194
Источник: http://iz-kirpicha.su/harakteristiki/teploprovodnost/teploprovodnost-kirpicha-silikatnogo-236
Плотность пустотелого кирпича
Плотность пустотелых кирпичей снижена из-за наличия пустот, процент которых варьируется от 13 до 50% от внутреннего объема. Поризация обеспечивает небольшой вес изделий, высокие теплоизоляционные и звукоизоляционные характеристики.
Типовые показатели уплотненности красного пустотелого блока варьируется в пределах от 1100 до 1450 кг/м3. Стройматериал подходит для возведения перегородок между комнатами, облегченных панелей, а также для заполнения каркасных конструкций домов. Уплотненность состава можно уменьшить до показателя в 1000 кг/см3, при этом увеличится морозостойкость.
Блок: 5/7 | Кол-во символов: 618
Источник: https://kubkirpich.ru/o-kirpiche/plotnost.html
Плотность облицовочного кирпича
Облицовочные (лицевые) блоки имеют ровную форму, глянцевую поверхность, обладают средней прочностью и надежной теплоизоляцией. Характеристики плотности фасадных материалов варьируются в пределах от 1300 до 1450 кг/см3. Износостойкость состава обусловлена невысокой пористостью — от 6 до 14%. Кирпичи изготавливают с щелями и применяют для декорирования наружных стен зданий, оформления ограждающих конструкций, парковых декоративных форм и т.д.
Производят и добавочный подвид строительного материала — теплый. Состав отличается большим числом пор, по сравнению со стандартными облицовочными изделиями. Плотность варьируется в пределах от 1100 до 1150 кг/м3.
Облицовочные блоки с глазурированием имеют слой стекловидной массы, непроницаемый для влаги. Повторный обжиг, который положен по технологии изготовления после нанесения глазури, не сказывается на прочности изделий. Характеристики уплотненности у подвида типовые — от 1300 до 1450 кг/м3. Но стоимость состава выше стандартного за счет высоких декоративных качеств.
Блок: 6/7 | Кол-во символов: 1055
Источник: https://kubkirpich.ru/o-kirpiche/plotnost.html
Плотность клинкерного кирпича
Блоки клинкерные производят из сухой глины красного оттенка. После закаливания при высоких температурных режимах состав приобретает устойчивую плотность — от 1900 до 2100 кг/см3. Износостойкость обусловлена и низкой пористостью — всего 5%, которая достигается спеканием минерального состава, снижающим объемы щелей в кирпичах, уменьшающим вероятность попадания влаги в сырье.
Марки блоков отличаются оттенками и фактурами, которые производятся посредством подбора специальных составов глин, изменения температурных режимов и времени при обжиге. Но показатели уплотненности состава сохраняются на среднем для подвида уровне.
Недостатки — высокие цена и теплопроводность. Поэтому при укладке потребуются затраты на теплоизоляционные работы.
Плотность шамотного кирпича
Уплотненность шамотных кирпичей средняя и варьируется в пределах от 1700 до 1900 кг/см3. Высокая износостойкость достигается за счет небольшой пористости, которая составляет не больше 8%. Материал прочный и не деформируется под воздействием высоких температур, максимальный показатель — +1600°С.
На 70% материал состоит из глины огнеупорной, которая отличается большим весом. При проектировании необходимо учитывать массу строительного материала, чтобы избежать увеличения нагрузки на несущие части здания.
Разновидности шамотного кирпича (арочные, классические, трапециевидные либо клиновидные) имеют похожие показатели плотности. Блоки применяют для укладки печей и каминов, производственных сооружений, промышленных сталеплавильных установок и т.д. Технология изготовления, состав и показатели износостойкости обусловили высокую цену стройматериала.
Блок: 7/7 | Кол-во символов: 1676
Источник: https://kubkirpich.ru/o-kirpiche/plotnost.html
Количество использованных доноров: 4
Информация по каждому донору:
- http://iz-kirpicha.su/harakteristiki/teploprovodnost/teploprovodnost-kirpicha-silikatnogo-236: использовано 3 блоков из 6, кол-во символов 8423 (36%)
- http://stroitel-lab.ru/koefficienty-morozostojkosti-teploemkosti-i-teploprovodnosti-kirpicha.html: использовано 1 блоков из 2, кол-во символов 5675 (24%)
- https://klademkirpich.ru/svojstva/112-teploprovodnost-silikatnogo-kirpicha: использовано 3 блоков из 4, кол-во символов 3431 (15%)
- https://kubkirpich.ru/o-kirpiche/plotnost.html: использовано 5 блоков из 7, кол-во символов 6043 (26%)
Коэффициент теплопроводности изоляционного кирпича, полученного из опилок и глины
В этой статье представлен экспериментальный результат по влиянию размера частиц смеси шаровой глины, каолина и опилок на температуропроводность керамических кирпичей. Смесь сухих порошков шаровой глины, каолина с одинаковым размером частиц и опилок с разными размерами частиц была смешана в разных пропорциях и затем уплотнена до высокого давления перед обжигом до 950 ° C. Затем определялась температуропроводность косвенным методом, включающим измерение теплопроводности, плотности и удельной теплоемкости.Исследование показывает, что коэффициент температуропроводности увеличивается с уменьшением размера частиц каолина и шаровой глины, но уменьшается с увеличением размера частиц опилок.
1. Введение
В недавнем исследовании Манукаджи [1] температуропроводность очень важна во всех задачах неравновесной теплопроводности в твердых объектах. Скорость изменения температуры во времени зависит от численного значения температуропроводности. Физическое значение температуропроводности связано с диффузией тепла в среду при изменении температуры со временем.Неравновесная теплопередача важна из-за большого количества проблем нагрева и охлаждения, возникающих в промышленности [2]. В металлургических процессах необходимо прогнозировать скорости охлаждения и нагрева для проводников различной геометрии, чтобы прогнозировать время, необходимое для достижения определенных температур. Материалам с высокой тепловой массой потребуется больше времени, чтобы тепло переместилось от горячей поверхности кирпича к холодной стороне, а также потребуется много времени для выделения тепла после удаления источника тепла [3, 4].В статье Арамида [5] указывается, что при обжиге образцов кирпича, изготовленных из опилок, примесь опилок выгорает при температуре 450–550 ° C [6], оставляя поры (воздушные пустоты) в кирпиче, что замедляет тепловой поток. .
Одной из проблем, с которыми сталкивается строительная промышленность Уганды, является высокое потребление электроэнергии из-за плохих систем вентиляции и кондиционирования воздуха. В основном это связано с отсутствием методов теплоизоляции зданий [7, 8]. Тем не менее, в Уганде не производятся классифицированные теплоизоляторы. Страна зависит от импортных изоляционных материалов, которые очень дороги и труднодоступны для местной промышленности, и, тем не менее, в разных частях страны имеются обширные месторождения полезных ископаемых, которые могут предоставить потенциальное сырье для производства различных керамических изделий, таких как теплоизоляционные. кирпичи. Таким образом, в данной статье представлены результаты экспериментального исследования влияния размера частиц на температуропроводность глиняных кирпичей, состав которых показан в таблице 1, которые были изготовлены из комбинации каолина, шаровой глины и древесных опилок с различными частицами. размеры.
|
2.

2.1. Обработка материалов
Сырьем, используемым в этом исследовании, были каолин, шариковая глина и опилки твердых пород древесины. Опилки получали из красного дерева. Твердая древесина была предпочтительнее, поскольку при включении в глиняные кирпичи она образует однородные поры, имеет высокую теплотворную способность и не вызывает вздутие живота [9]. Каолин собирали в Мутаке на юго-западе Уганды, а глину в виде шариков собирали в Нтаво (Муконо), в 25 км к востоку от столицы Кампалы.Шариковую глину и каолин отдельно вымачивали в воде на семь дней, чтобы дать им полностью раствориться, чтобы отделить коллоиды от тяжелых частиц, таких как камни, песок и корни. Затем глину сушили и измельчали до порошка в шаровой мельнице. Порошки просеивали через тестовые сита, склеенные вместе на механическом встряхивателе для тестовых сит. Диапазон размеров частиц 0–45 мкм м, 45–53 мкм м, 53–63 мкм м, 63–90 мкм м, 90–125 мкм м и 125–154 мкм По каолину и шаровой глине отдельно добыто м. Точно так же порошки опилок с диапазоном размеров частиц 0–125 мкм мкм, 125–154 мкм мкм, 154–180 мкм мкм, 180–355 мкм мкм и 355–425 мкм мкм. также подготовлен.
Исследование проводилось с использованием двух наборов серийных составов. В первой части составы партий A 1 –A 5 имели композиции каолина и шаровой глины с одинаковыми диапазонами размеров частиц, которые были смешаны с равными массами опилок трех разных диапазонов размера частиц в соотношении 9: 7: 4 по весу, как показано в таблице 1.Смесь этих порошков сначала сушили на солнце, а затем прессовали до давления 50 МПа в прямоугольные образцы с размерами 10,51 см × 5,25 см × 1,98 см. Образцы для испытаний обжигали в электропечи до 950 ° С в два этапа. На первом этапе их сушили при скорости нагрева 2,33 ° C мин. -1 до 110 ° C, и эту температуру поддерживали в течение четырех часов, чтобы удалить воду из образца. На втором этапе образцы обжигались со скоростью 6 ° C мин. -1 до 950 ° C.При этой температуре время выдержки составляло один час перед выключением печи, чтобы дать образцам возможность естественным образом остыть до комнатной температуры.
Во второй части исследования составы серий B 1 –B 5 имели каждый из диапазонов размеров частиц 0–125 мкм м, 125–154 мкм мкм, 154–180 мкм м, 180–355 мкм м и 355–425 мкм мкм опилок, смешанных с каолином и шаровой глиной с теми же диапазонами размеров частиц в соотношении 4: 9: 7, как показано в (Таблица 1), перед их уплотнением при давлении 50 МПа в прямоугольные образцы размером 10.51 см × 5,25 см × 1,98 см. Процесс обжига был аналогичен процессу обжига первой партии. Каждый из составов образцов имел общую массу 200 г (90 г каолина, 70 г шариковой глины и 40 г опилок).
2.2. Определение коэффициента температуропроводности
Коэффициент температуропроводности определяли из измеренных значений удельной теплоемкости, теплопроводности и плотности с использованием следующего уравнения, полученного из закона теплопроводности через твердое тело Фурье: где — коэффициент температуропроводности, — теплопроводность, — плотность, — удельная теплоемкость [10].
Теплопроводность измерялась быстрым измерителем теплопроводности (QTM-500) с сенсорным зондом (PD-11), в котором для исследования теплопроводности образцов используется переходный метод (нестационарное состояние) [11, 12]. Удельную теплоемкость определяли методом смесей [13], а плотность определяли путем измерения размеров и массы образца. Измерения теплопроводности, плотности и удельной теплоемкости проводились при комнатной температуре.
2.3. Химический состав
Химический состав обожженных образцов был определен с помощью рентгенофлуоресцентного (XRF) спектрометра, модель X ‘Unique ll [14], чтобы установить химический состав основных соединений, которые влияют на термические свойства изоляционный глиняный кирпич Таблица 2.
|
3. Результаты и обсуждения
. Влияние размера частиц на коэффициент температуропроводности
Коэффициент температуропроводности определяли косвенным методом, включающим измерение теплопроводности, удельной теплоемкости и плотности обожженных образцов [2, 10].Влияние размера частиц на теплопроводность, плотность, удельную теплоемкость и температуропроводность обсуждается ниже.
3.1.1. Влияние размера частиц на теплопроводность
Результаты (рис. 1) показывают, что теплопроводность увеличивается с уменьшением размера частиц каолина и шариковой глины при фиксированном размере частиц опилок. Это связано с тем, что более крупные частицы создают большие поры из-за плохого заполнения пустот, содержащих воздух после обжига, по сравнению с мелкими частицами [15, 16]. Теплопроводность керамического материала зависит от путей теплопроводности, на которые влияют микроструктура, гранулометрический состав и количество воздушного пространства или пустот, создаваемых во время обжига тела [17]. На рисунке 2 показано, что теплопроводность уменьшается, когда размер частиц опилок, включенных в глиняную смесь, увеличивается. Это связано с тем, что размер частиц горючих органических отходов определяет количество воздушных пространств, создаваемых в изоляционном глиняном кирпиче [18–20].Кроме того, теплопроводность еще больше уменьшается, когда размер частиц смеси каолина и шаровой глины увеличивается из-за меньшего контакта между частицами [21]. Сцепление частиц глины зависит от гранулометрического состава и диапазона размеров мелких и крупных частиц, а также от того, состоит ли тело из частиц одного или нескольких размеров.
3.1.2. Влияние размера частиц на плотность
Плотность образцов увеличивается с уменьшением размера частиц смеси каолина и шаровой глины при фиксированном размере частиц опилок (рис. 3).Меньшие размеры частиц имеют больше точек контакта, что обеспечивает большую когезию и смазку каолина шариковой глиной. Множественные размеры частиц в керамическом теле увеличивают упаковку частиц и создают тело с высокой плотностью, поскольку более мелкие зерна проникают в межчастичные пустоты более крупных частиц и, таким образом, увеличивают плотность упаковки. Это исследование также показывает, что наблюдается дальнейшее снижение плотности с увеличением размера частиц опилок при фиксированном размере частиц каолина и шаровой глины [20].
На рисунке 4 плотность образцов уменьшается с увеличением размера частиц опилок для фиксированного размера частиц каолина и шариковой глины.Маленькие поры, которые создаются мелкими частицами опилок, имеют тенденцию закрываться во время уплотнения в результате образования межкристаллитных контактных областей, в то время как большие поры остаются в матрице глины во время обжига и созревания [18]. Это объясняется достаточной длиной опилок, которая улучшает сцепление на границе раздела опилки-глина, чтобы противодействовать деформации и сжатию глины во время сушки и обжига [9].
3.1.3. Изменение удельной теплоемкости в зависимости от размера частиц
Удельная теплоемкость для образцов от A 1 до A 5 , как правило, ниже, чем у образцов от B 1 до B 5 (рисунки 5 и 6).Это означает, что более низкий коэффициент температуропроводности может быть достигнут за счет использования опилок большего размера [9]. Удельная теплоемкость увеличивается с увеличением размера частиц используемых глиняных материалов (Рисунок 5) и увеличением размера частиц добавленных опилок (Рисунок 6).
3.1.4. Коэффициент температуропроводности
Коэффициент температуропроводности увеличивается по мере уменьшения размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок (Рисунок 7).Основное влияние размера частиц на коэффициент температуропроводности твердого материала связано с количеством твердого тела и воздушного пространства, которое тепло должно проходить поперек при прохождении через материал. Это объясняется большим размером частиц, который приводит к высоким уровням пористости из-за плохого заполнения пустот между частицами большого размера по сравнению с мелкими частицами, создавая большие воздушные пространства [21]. Большая доля воздуха дает низкое значение коэффициента температуропроводности из-за его низкой теплопроводности.Уменьшение размера частиц увеличивает содержание частиц в единице объема, что уменьшает среднее расстояние между частицами глинистой матрицы. Это приводит к плотной упаковке частиц, что приводит к уплотнению глиняных кирпичей, что увеличивает температуропроводность [16, 20]. Следовательно, мелкозернистый материал с закрытой текстурой (малый размер частиц) имеет гораздо больший коэффициент температуропроводности, чем материал с более крупной открытой текстурой (крупный размер частиц). Небольшие размеры частиц увеличивают низкое тепловое сопротивление, поскольку точки контакта для теплопроводности очень плотно упакованы.Большой размер зерна каолина и шаровой глины позволяет получить кирпичи, которые более пористые и, следовательно, более устойчивы к резким перепадам температуры в образце [1, 22].
Низкие значения температуропроводности подходят для минимизации теплопроводности. Наблюдается (Рис. 7), что увеличение размера частиц добавленных опилок дополнительно снижает температуропроводность.
Температуропроводность уменьшается с увеличением размера частиц опилок при фиксированном размере частиц комбинации каолина и шариковой глины (рис. 8).Это связано с тем, что частицы опилок выгорают при температуре 450-550 ° C [6], оставляя поры или пустоты в образцах. Во время сушки и обжига происходит уплотнение, и небольшие поры, создаваемые мелкими частицами опилок, имеют тенденцию закрываться глинистыми минералами в результате образования межкристаллитных контактных областей, в то время как большие поры сохраняются в глинистой матрице [18].
Включение опилок в керамическое тело, которое удаляется на этапе обжига, оставляет поры, размер которых зависит от размеров органических частиц.Более мелкие опилки образуют более мелкие поры, большинство из которых может быть устранено во время уплотнения, в то время как частицы большого размера образуют большие поры. Опилки с крупными частицами улучшают сцепление на границе раздела опилки-глина, что препятствует деформации и усадке глины. Это обеспечивает высокую пористость, низкую плотность, низкую теплопроводность и низкую скорость изменения температуры по образцу. Следовательно, коэффициент температуропроводности уменьшается по мере увеличения размера частиц опилок. Как правило, значения температуропроводности от B 1 до B 5 ниже, чем у A 1 до A 5 .Это результат мультипликативной пористости, создаваемой добавлением глины и опилок.
3.2. Химический состав
Процентный состав SiO 2 составляет 68,0%, а процентный состав Al 2 O 3 составляет 22,0%. Согласно отчету Бюро энергоэффективности [23] о шамотных огнеупорах, шамотные огнеупоры низкой плотности состоят из силикатов алюминия с различным содержанием кремнезема от 67 до 77% и содержания Al 2 O 3 от 23 до 33%.Химический состав глинозема в разработанных образцах может быть улучшен либо путем обогащения сырья (каолин и шарообразная глина), либо путем увеличения процентного состава каолина в образцах. Образцы глины содержат менее 9,0% флюсовых компонентов (K 2 O, Na 2 O и CaO).
3.3. Значение
Физическое значение низких значений температуропроводности связано с низкой скоростью изменения температуры в материале в процессе нагрева.Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов. Подходящим теплоизолятором является образец, содержащий комбинацию каолина и шаровидной глины с размером частиц 125–154 мкм мкм с опилками с размером частиц 355–425 мкм мкм. Эта комбинация характеризовалась наименьшим значением температуропроводности 1,16 × 10 −7 м 2 с −1 и ее легко подготовить для промышленного производства теплоизоляционного кирпича.
4. Выводы
Результаты исследования показывают, что все проанализированные образцы являются хорошими теплоизоляторами, а коэффициент температуропроводности напрямую зависит от размера частиц комбинации минералов каолина и шаровой глины, а также от размера частиц опилок. добавление. Таким образом, из проведенного общего экспериментального анализа было обнаружено следующее: (1) Коэффициент температуропроводности увеличивается с уменьшением размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок.Добавление опилок большего размера снижает коэффициент температуропроводности даже при очень малых размерах частиц каолина и шаровой глины. (2) Коэффициент температуропроводности уменьшается с увеличением размера частиц добавленных опилок до фиксированного размера частиц каолина и шаровой глины. Включение каолина и шариковой глины с гораздо большим размером частиц дополнительно снижает коэффициент температуропроводности из-за мультипликативного эффекта более высокой пористости, создаваемой опилками и глинистыми минералами. (3) Образцы содержат подходящие композиции кремнезема и глинозема, которые подходят для легкие жаропрочные теплоизоляционные кирпичи.(4) Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.
Благодарности
Авторы хотели бы поблагодарить сотрудников Университета Кямбого за их руководство и поддержку в ходе исследования и исследования. Кроме того, выражаем благодарность руководству и персоналу Института промышленных исследований Уганды, UIRI (Департамент керамики), за предоставленные лаборатории и оборудование для использования в исследованиях, а также Департаменту физики Университета Макерере.Авторы особо хотят выразить признательность за финансовую поддержку, которую они получили от г-жи Наньямы Кристин, доктора Майеку Роберта и его жены г-жи Кейт Майеку.
керамика, шамот, красный, коэффициент, коэффициент изоляции воздушного шума кирпичной кладки, дерева и пеноблока, видео инструкция по монтажу своими руками, фото и цена. Теплопроводность силикатного кирпича. Плотность, вода
Современный строительный рынок все больше пополняется новыми материалами, которые радуют потребителя качественным исполнением, улучшенными свойствами, обновленными характеристиками. Их преимущества перед традиционными неоспоримы благодаря преобладанию сразу нескольких характеристик по многим значимым параметрам.
С появлением новых технологий в строительной отрасли нельзя забывать и о хорошо зарекомендовавших себя строительных материалах. Например, кирпичные материалы во все времена были востребованными, и никакие факторы не могли повлиять на уровень их популярности. Из них большая часть построек была возведена, так как они обладают способностью противостоять различным климатическим условиям.
С давних времен и до наших дней это строительное изделие выдерживает большие нагрузки, оно проходит долгую проверку временем. Прочность, долговечность, экологические свойства, водостойкость, морозостойкость, звуко- и теплоизоляционные характеристики относят его к лучшим строительным материалам.
Что такое теплопроводность?
Тем не менее, одним из мощных свойств кирпича является теплопроводность (Т) — способность пропускать тепло через себя, несмотря на разные температуры. Он указывает, насколько теплая кирпичная стена, насколько этот материал способен проводить и передавать тепло.
Керамические изделия используются при возведении несущих стен, перегородок между комнатами, облицовки — дают возможность придать дому и прилегающему забору аккуратный и достойный вид, презентабельный вид, создать неповторимый стиль, а также увеличить тепло в доме. . При выборе строительных материалов для возведения полов, стен и полов это наиболее важные факторы.
На вопрос: «Как определить значение тепловых характеристик?», Отвечают специалисты с богатым и многолетним опытом работы. Они авторитетно настаивают на том, что многочисленные виды кладки детально изучены в лабораторных условиях. В соответствии с полученными данными устанавливается определенный коэффициент теплопроводности кирпича.
Индикаторы указывают на разные температуры, так как тепловая энергия имеет способность постепенно переходить из горячего состояния в холодное.При достаточно высоких температурах этот процесс можно увидеть открыто. Высокая интенсивность теплопередачи за счет изменения температуры.
Коротко о законе Фурье
Для более глубокого изучения теплопроводности и теплового потока с учетом площади поперечного сечения ученые Фурье вывели специальный закон, показывающий, как существующие материалы отлично сохраняют тепло и улучшают их изоляцию.
Величина степени теплоотдачи обозначается специальным коэффициентом (QD) — λ, а тепловая энергия измеряется в ваттах.Последний снижает свой уровень при прохождении расстояния 1 мм с перепадом температур в 1 градус. В результате меньшая потеря энергии более выгодна, а строительный материал с небольшой КТ относится к более теплым.
Параметр теплопроводности в значительной степени обусловлен плотностью, с понижением его уровня уменьшается и тепловой показатель. То есть плотные тяжелые образцы имеют более высокое значение Т, а меньший вес и меньшая прочность указывают на малую Т. Для увеличения Т они влияют на состав материала, его плотность, соблюдение способа изготовления, влагостойкость.
Теплопроводность кирпича разных типов
По справочным данным теплопроводность силикатного кирпича (сухой) составляет 0,8 Вт / м * К, Т кладки из него — 0,7 Вт / м * К. Значение этого параметра у керамического кирпича выше, Т кладки из него — 0,9. Вт / м * К. Следовательно, тепловой показатель передачи энергии у силиката меньше, чем у керамики, то есть первый дольше сохраняет тепло, поэтому его применяют для отделочных работ на фасадах зданий за счет лучшего обеспечения теплоизоляционных характеристик.
Теплопроводность пустотелого кирпича составляет 0,3-0,4 Вт / м * К, то есть теплопотери увеличиваются почти вдвое. В результате такие постройки требуют дополнительного утепления.
Облицовка кирпича по этому показателю зависит от вида, так как он делится на керамический, силикатный и клинкерный. Самый высокий уровень Т у клинкера, самый низкий — у керамики. Силикат намного холоднее керамики, и наиболее популярным в этом плане является гиперпрессованный. Чем плотнее и прочнее строительный материал, тем выше уровень его Т.
Красный кирпич имеет коэффициент теплопроводности в зависимости от технологии его производства. За счет достаточной плотности и пустотности от 40% до 50% Т составляет 0,2 — 0,3 Вт / м * К. При таком значении толщина стен может быть значительно меньше, чем в здании из силиката.
Уровень тепловых характеристик шамотного кирпича очень важен из всех остальных показателей. Самое главное учитывать этот фактор при строительстве печей, а также каминов.Умение быстро отдавать тепло просто незаменимо, если вы хотите иметь такие виды отопления в своем доме.
Как известно, степень передачи тепловой энергии формируется такими различными качественными свойствами: массой, объемом, влажностью, пористостью, плотностью, влажностью, типами добавок. Большое количество пор, содержащих воздух, создает низкий уровень теплопроводности. Для обеспечения тепла в жилище следует выбирать стройматериалы с низким значением СТ, так как это напрямую влияет на выбор технологии утепления стен и системы отопления.
Итак, каждый тип кирпича имеет свой коэффициент теплопроводности (КТ), измеряемый в Вт / м ° C или в Вт / м * К. Для силикатных, керамических, полнотелых и пустотелых данные приведены выше. Облицовочная (лицевая) керамика имеет довольно низкий уровень — 0,3 — 0,5, а гиперпрессованная, наоборот, — 1,1. Красная пустота — всего 0,3 — 0,5, «сверхэффективная» — от 0,25 до 0,26, полнотелая — от 0,6 до 0,7, глина — 0,56.
Кирпичные изделия разных производителей имеют разные физические характеристики.Поэтому строительные работы необходимо проводить с учетом значений указанных коэффициентов, указанных в документации от производителя. Перед началом работ следует изучить всю сопутствующую информацию, прислушаться к рекомендациям опытных профессиональных строителей и только после этого быть готовым приступить к намеченному строительству.
Учитывается теплопроводность кирпича различных типов (силикатный, керамический, облицовочный, огнеупорный). Произведено сравнение кирпича по теплопроводности; коэффициенты теплопроводности огнеупорного кирпича представлены при различных температурах — от 20 до 1700 ° С.
Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с более низкой плотностью имеют более низкую теплопроводность, чем высокую. Например, пенобетонный, диатомовый и изоляционный кирпич плотностью 500 … 600 кг / м 3 имеют низкое значение теплопроводности, которое находится в пределах 0,1 … 0,14 Вт / (м · град). .
Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый).Величина теплопроводности кирпича этих типов может существенно различаться.
Кирпич керамический. Изготовлен из высококачественного красного цвета, составляющего около 85-95% его состава, а также других компонентов. Этот кирпич изготавливается методом формования, сушки и обжига при температуре около 1000 градусов по Цельсию. Теплопроводность керамического кирпича различной плотности составляет 0,4 … 0,9 Вт / (м · град).
Сфера применения керамического кирпича делится на рядовой строительный, огнеупорный и облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность, однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича составляет 0,37 … 0,93 Вт / (м · град).
Кирпич силикатный. Изготовлен из очищенного песка и отличается от керамического по составу, цвету и теплопроводности. Теплопроводность силикатного кирпича несколько выше и составляет от 0,4 до 1,3 Вт / (м · град).
Кирпич | Плотность, кг / м 3 | Теплопроводность, Вт / (м · град) |
---|---|---|
Пеношамотный | 600 | 0,1 |
Диатомит | 550 | 0,12 |
Изоляция | 500 | 0,14 |
Кремнезем | — | 0,15 |
Бурли | 700… 1300 | 0,27 |
Облицовка | 1200… 1800 | 0,37… 0,93 |
Силикатная щель | — | 0,4 |
Керамика красная пористая | 1500 | 0,44 |
Керамический полый | — | 0,44… 0,47 |
Силикат | 1000… 2200 | 0,5… 1,3 |
Шлак | 1100… 1400 | 0,6 |
Керамика красная плотная | 1400… 2600 | 0,67… 0,8 |
Силикат из тех.![]() | — | 0,7 |
Клинкер полнотелый | 1800… 2200 | 0,8… 1,6 |
Шамот | 1850 | 0,85 |
динас | 1900… 2200 | 0,9… 0,94 |
Хромит | 3000… 4200 | 1,21… 1,29 |
Хромомагнезит | 2750… 2850 | 1,95 |
Хром-магнезит жаропрочный | 2700… 3800 | 4,1 |
Магнезит | 2600… 3200 | 4,7… 5,1 |
Карборунд | 1000… 1300 | 11… 18 |
Теплопроводность кирпича также зависит от его структуры и формы:
- пустотелый кирпич — изготавливается с пустотами, сквозными или глухими и имеет более низкую теплопроводность по сравнению с сплошным изделием.Коэффициент теплопроводности пустотелого кирпича составляет от 0,4 до 0,7 Вт / (м · град).
- полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич проводят тепло лучше, чем пустотелый в 1,5-2 раза.
Печной или огнеупорный кирпич. Предназначен для использования в агрессивных средах, применяется для закладки печей, каминов или теплоизоляции помещений, находящихся под воздействием высоких температур.Огнеупорный кирпич обладает хорошей термостойкостью и может использоваться при температуре до 1700 ° С.
теплопроводности огнеупорного кирпича при высоких температурах увеличиваются и может достигать значения 6,5 … 7,5 Вт / (м · град). Более низкая теплопроводность по сравнению с различными пенобетонными и диатомитовыми кирпичами. Теплопроводность такого кирпича при максимальной температуре применения (850 … 1300 ° С) составляет всего 0,25 … 0,3 Вт / (м · град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно используется для кладки печей, выше и равна 1. 44 Вт / (м · град) при 1000 ° C.
Кирпич | Плотность, кг / м 3 | Теплопроводность, Вт / (м · град) при температуре, ° С | ||||||
---|---|---|---|---|---|---|---|---|
20 | 100 | 300 | 500 | 800 | 1000 | 1700 | ||
Диатомит | 550 | 0,12 | 0,14 | 0,18 | 0,23 | 0,3 | — | — |
динас | 1900 | 0,91 | 0,97 | 1,11 | 1,25 | 1,46 | 1,6 | 2,1 |
Магнезит | 2700 | 5,1 | 5,15 | 5,45 | 5,75 | 6,2 | 6,5 | 7,55 |
Хромит | 3000 | 1,21 | 1,24 | 1,31 | 1,38 | 1,48 | 1,55 | 1,8 |
Пеношамотный | 600 | 0,1 | 0,11 | 0,14 | 0,17 | 0,22 | 0,25 | — |
Шамот | 1850 | 0,85 | 0,9 | 1,02 | 1,14 | 1,32 | 1,44 | — |
Источники:
- Физические величины.
Справочник. Бабичев А.П., Бабушкина Н.А. и другие; Автор: ed. ЯВЛЯЕТСЯ. Григорьева — М .: Энергоатомиздат, 1991 — 1232 с.
- Таблицы физических величин. Справочник. Эд. Акад. И.К. Кикоин. М .: Атомиздат, 1976. — 1008 с. Строительная физика, 1969 — 142 с.
- Духовки промышленные. Справочное руководство по расчетам и проектированию. 2-е издание, дополненное и переработанное, Казанцев Э. И. М .: Металлургия, 1975 — 368 с.
- Х. Вонг. Основные формулы и данные по теплопередаче для инженеров.Справочник. М:. Атомиздат 1979 — 212 с.
Кирпич в строительстве используется везде, как для крупногабаритных построек, так и для частных построек. Такая популярность оправдана, ведь этот строительный материал имеет множество параметров, в том числе прочность, долговечность и относительно хорошую звуко- и теплоизоляцию. Главный конкурент в частном строительстве здесь — древесина, поэтому сравним теплопроводность кирпича и дерева.
Для начала разберемся, что такое кирпич, какие бывают его разновидности, что, где и когда применяют. После этого вам будет представлен обзор деревянных строительных материалов с описанием их качеств и недостатков. Ну и в заключение делаем вывод, какой материал лучше и как его правильно применять в строительстве.
Разумеется, мы уделим много внимания теплопроводности, и опишем этот параметр для всех рассматриваемых здесь видов стройматериалов. Сравнение даст вам возможность сделать правильный выбор.
Виды кирпича
Клинкер
Эта разновидность имеет самую высокую теплопроводность.Именно поэтому, несмотря на отличные качественные показатели прочности, при возведении стен этот материал используется редко. Его чаще всего используют для мощения дорог и устройства полов в производственных помещениях.
Коэффициент (λ) равен значению — 08 — 09 Вт / (м * К). Это очень большой показатель, который делает бессмысленным использование клинкера для строительства утепленных конструкций. Для этих целей есть другие строительные материалы.
Силикат
Далее идет строительный материал из силиката. Разновидностей этого строительного продукта много, и уровень теплопотерь здесь напрямую зависит от веса агрегата. То есть, чем меньше весит силикатный брикет, тем меньше потерь тепла будет у построенного из него здания.
Таким образом, цельный брикет, например, двойной силикатный кирпич М 150, будет значительно терять тепло (λ — 0,7 — 0,8). Но уже щелевой силикат будет иметь коэффициент равный значению — 0,4, что почти вдвое эффективнее.
Однако силикат, как дешевый продукт, требует качественной дополнительной изоляции.Да и показатели прочности и долговечности у него довольно посредственные.
Керамика
К ним относятся:
- Полнотелый
- Пустотелый.
- Огнеупор.
- Прорези.
- Теплая керамика.
Все эти материалы используются при кладке. У каждого из них своя величина сохранения и теплопотерь. Логично, что у полнотелого материала самый слабый показатель сохранения тепла — 05-0. 8 Вт / (м * К). Это связано с его весом.
Отдельно стоят огнеупорные керамические строительные материалы. Например, теплопроводность шамотного кирпича принимает значение 06-08 Вт / (м * К). Этот индикатор практически идентичен индикатору.
Это совпадение неудивительно, поскольку шамот — это брусок из обожженной глины с улучшенными огнеупорными качествами.
Прочие виды
Следует отметить, что теплопроводность керамического кирпича самая низкая среди всех видов строительных материалов такого типа.Понятно, что дело в том, что не вся керамика не теплопроводна, как уже было отмечено выше, многое зависит от веса строительного брикета.
Итак, наиболее токонепроводящей является керамика, а теплая керамика мы отмечали ранее. Пористая планка, сделанная таким образом, что помимо имеющихся трещин имеет еще и особую структуру, уменьшающую собственный вес. Этот фактор дает возможность экономить тепло.
Или, может быть, дерево
Дерево тоже вариант.
Преимущества деревянных конструкций
Как уже упоминалось в начале, мы сравниваем теплопроводность кирпичной кладки и деревянных конструкций.Естественно, у нас не получится без обзора свойств самого этого дерева. Сравниваем не только теплопроводность, но и другие важные характеристики.
Итак, начнем с показателя сохранения тепла. Деревянные конструкции здесь лучше многих кирпичных аналогов. Дерево в силу своих особенностей имеет гораздо меньший коэффициент λ.
Но обо всем по порядку. Сравнивая теплопроводность дерева и кирпича, нужно понимать, что древесина бывает разной.
Вот наиболее часто используемые породы деревьев, а также изделия из них:
- Массив дуба.
- Хвойные породы.
- ДСП и аналогичные плиты.
Все они имеют коэффициент теплопроводности, который значительно меньше, чем у кирпичных строительных материалов. Самый низкий показатель древесины, которая разрезается вдоль волокон. Там λ равно 0,1.
Но даже для древесины, распиленной поперек волокон, показатель теплопотерь минимален — 0,18 — 0.23 Вт / (м * К). DSP имеет это значение в диапазоне 0,15 Вт / (м * К).
Недостатки деревянных конструкций
Становится ясно, что древесина больше подходит для возведения стен в зданиях, так как она обладает лучшими свойствами, необходимыми для экономии тепла. Но почему кирпичная кладка еще более распространена?
Ответ прост. Несмотря на то, что коэффициент теплопроводности кирпича выше, чем у деревянной конструкции, последняя имеет ряд недостатков, которые подталкивают строителей в пользу кладки.
К этим недостаткам относятся:
- Цена. Качественная древесина, особенно цельная (а другая для возведения стен и не подходит) стоит довольно больших денег.
- Прочность. Несмотря на свою стоимость, дерево недолговечно, подвержено таким неприятностям, как усадка, образование посинения, гниль и т. Д. Чтобы всего этого избежать и продлить срок службы, деревянные конструкции необходимо дополнительно обрабатывать специальными веществами.
.
- Пожарная опасность Дерево горит.И горит довольно хорошо. Кирпичная кладка, а тем более шамот, во много раз пожаробезопасна, чем деревянная конструкция.
- Воздействие факторов окружающей среды. Дерево очень боится солнца, осадков и прочего.
Понятно, что наличие столь существенных недостатков, нейтрализация которых требует больших денежных затрат, отпугивает потенциального потребителя. Отличная теплопроводность деревянных конструкций не способна спасти положение, и большее количество потребителей отдают предпочтение кирпичным конструкциям.
В основном из дерева строят элитное жилье, на котором никто не думает экономить. Для обычных построек используется старый добрый строительный кирпич.
Приступаем к делу
Итак — выбор очевиден.
Что построить
Итак, мы решили, что лучшим вариантом для возведения стен будут керамические стройматериалы. Хотя эти изделия не блещут низкими теплопроводными свойствами, однако по другим показателям они намного привлекательнее дерева.
Понятно, что создать теплый дом из одного кирпича не удастся. Понадобится грамотная дополнительная изоляция.
Не будем здесь останавливаться на том, какими материалами лучше утеплить стены. Отметим лишь некоторые случайные моменты.
Коэффициент теплопроводности кирпичной стены, как уже говорилось, довольно высокий (доходит до значения 0,8 в зависимости от типа материала). При использовании кирпичной кладки и теплоизоляционного материала в зимнее время могут возникнуть проблемы, связанные с накоплением влаги внутри стены.Это очень негативно сказывается на его качественных свойствах и долговечности.
Чтобы предотвратить такую ситуацию, есть один инженерный прием. Об этом и поговорим дальше.
Да, такая уловка называется воздушной прослойкой в кирпичной кладке. О нем знают многие, но не все правильно его создают.
Вот инструкция по созданию воздушного зазора:
- В первом ряду кладки между кирпичными брусками оставлены зазоры, которые нельзя заполнить цементным раствором.
Расстояние между этими промежутками должно быть около 1 метра.
- По всей высоте стены между кирпичной кладкой и изоляцией остается небольшое пространство, через которое воздух должен «проходить».
Таким образом создается вентиляция, а температура в помещении регулируется.
Примечание! Ни в коем случае нельзя делать стяжку или другое перекрытие на последнем ряду кладки, которое закрыло бы путь для циркуляции воздуха. Тем самым вы лишаете всю идею воздушного зазора.
At last
Как видите, теплопроводность кирпичной кладки можно снизить, не прибегая к каким-либо радикальным методам. И самое главное, вам не нужно тратить большие суммы денег или жертвовать качественными показателями вашего дома.
Кроме того, если вы решили создать стены из огнеупорного кирпича материала, то вы получите дополнительную степень безопасности, которую вы бы не достигли пути создания основы дерева. Несмотря на то, что теплопроводность шамотного кирпича довольно высока, все же хороший выбор в пользу безопасности.
Также следует отметить и показатель изоляции воздушного шума кладки. Как и теплопроводность, суперкачественных показателей у него нет, но вполне достаточно. А с дополнительной звукоизоляцией вы будете чувствовать себя очень комфортно.
При создании муфты из керамического материала показатель воздушного шума колеблется на границе 50 дБ. Это среднее значение с тенденцией к снижению.
Впрочем, вполне комфортно. При армировании кладки звукоизоляционными материалами можно повысить значение шумоизоляции до стабильного среднего значения.
Вывод
Понятно, что кладку можно произвести своими руками. На нашем сайте вы найдете много информации о том, как это сделать. Вы найдете информацию о кладке, как из кирпича, так и из пеноблока. Этот материал, кстати, интересен многими своими характеристиками.
Говоря о теплопроводности красного кирпича, хотелось бы закончить разговор на следующем. Этот показатель очень важен для дома: не пренебрегайте им, и тогда тепло не уйдет из вашего дома. Если у вас остались вопросы, то в представленном видео в этой статье вы найдете дополнительную информацию по данной теме.
Новые материалы не могут не восхищать своими характеристиками и возможностями. Польза строительных технологий с их помощью неоспорима. Искусственные и комбинированные строительные материалы превосходят традиционные сразу по нескольким ключевым параметрам, а зачастую и в несколько раз. Однако нельзя сбрасывать со счетов традиционные материалы: кирпич, например, был и остается востребованным.
Большинство домов кирпичные: в этом нетрудно убедиться. То есть о способности этого материала успешно противостоять атмосферным явлениям знают все.
Известны также механическая прочность и долговечность этого материала, а также экологическая безопасность. Кроме того, кирпич обладает хорошими тепло- и звукоизоляционными свойствами, морозостойкостью. Все эти качества делают его одним из лучших строительных материалов.
Виды кирпича
Ранее этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый. Иногда встречались керамические пустоты. Современные керамические кирпичи бывают разных цветов и оттенков: желтого, кремового, розового, бордового. Их фактура тоже может быть разной. Однако по способу изготовления и составу они все же подразделяются на керамические и силикатные.
У них нет ничего общего, кроме геометрических параметров. Керамика состоит из обожженной глины (с различными добавками), а силикат — из извести, кварцевого песка и воды. Тактико-технические характеристики обоих типов регламентируются разными нормативными документами, которые обязательно учитываются в строительной отрасли.
Керамический кирпич более популярен. Его разновидности: полнотелый, пустотелый, облицовка с разной текстурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и подходящим для возведения любых построек.
Назначение кирпича различных типов и их отличительные особенности
Кирпич по назначению делится на специальный, строительный и облицовочный. Конструкция применяется для кладки стен, фасады — для украшения фасадов, а в особых случаях — для особых (например, для кладки печи, камина или дымохода).
Полнотелый кирпич содержит не более 13% пустот: из него возводятся стены (внешние и внутренние), столбы, колонны и т. Д. Конструкции из такого материала способны нести дополнительную нагрузку за счет высокой прочности на сжатие, изгиб и хорошей морозостойкости керамического кирпича. Теплоизоляционные свойства зависят от пористости, а от нее зависит водопоглощение, способность материала сцепляться с кладочным раствором. Этот материал имеет не очень хорошее сопротивление теплопередаче, в связи с чем стены жилых домов должны быть выполнены достаточной толщины или дополнительно утеплены.
У пустотелого кирпича объем пустот может достигать до 45% от общего объема изделия, следовательно, его вес меньше, чем у полнотелого. Подходит для возведения светлых стен и наружных стен, они заполняют каркасы многоэтажных домов. Пустоты в нем могут быть как сквозными, так и закрытыми с той или иной стороны. Форма пустот — круглая, квадратная, овальная, прямоугольная. Они располагаются вертикально и горизонтально (последнее менее удачно, так как такая форма менее прочная).
В пустотном кирпиче объем пустот может достигать 45% от общего объема изделия.
Пустоты могут сэкономить довольно много материала, из которого можно сделать кирпичи. Кроме того, он значительно повышает его теплоизоляционные свойства. При этом важно, чтобы консистенция раствора была настолько густой, чтобы он не заполнял воздушные полости.
Кирпич облицовочный применяют соответственно для облицовки зданий. Обычно его размеры такие же, как у стандартного, но в продаже есть и изделия меньшей ширины.Чаще всего его делают пустотелым, что определяет его высокие тепловые характеристики.
Среди специального кирпича наиболее распространены огнеупорный (обжиговый) и теплоизоляционный. Оба используются для строительства каминов и печей (в том числе мартеновских). Они сделаны из особой шамотной глины, но имеют другое назначение. Огнеупор предназначен для выдерживания температур свыше 1600 ° С, а теплоизоляционный — для предотвращения нагрева наружных стен печей и потерь тепла. Если построить стены из этого материала, они хорошо сохранят тепло.Но слабая прочность материала позволяет только заливать их стены.
Клинкерный кирпич облицовывает цоколи зданий. Обладает высокой морозостойкостью и механической прочностью за счет использования при их изготовлении огнеупорных глин. Необработанный обжиг проводится при более высоких температурах, чем обычно.
Что такое теплопроводность
Этот термин относится к способности материала передавать тепловую энергию. Эта способность в данном случае выражает коэффициент теплопроводности кирпича.Для клинкера этот показатель составляет около 0,8 … 0,9 Вт / м К.
Силикат имеет более низкую теплопроводность и в зависимости от количества содержащихся в нем пустот делится на: щелевые (0,4 Вт / м · К), с техническими пустотами (0,66 Вт / м К), полнотелая (0,8 Вт / м К).
Керамика еще легче, поэтому этот показатель еще меньше. Для полнотелого кирпича она находится в пределах 0,5 … 0,8 Вт / м К, для щелевого кирпича — 0,34 … 0,43 Вт / м К и для пористого кирпича — 0,22 Вт / м К. Характеризуется пустотелый кирпич. на 0.57 Вт / м К. Этот показатель непостоянен и варьируется в зависимости от пористости материала, количества и расположения пустот.
Утверждение о том, что кирпич обладает высокой теплопроводностью, не совсем верно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных свойств полнотелого кирпича и теплоизоляционных свойств пустотелой (а еще лучше — пористой керамики) позволяет возводить надежные и энергоэффективные здания.
Производство полых керамических изделий в России стало составлять около 80%.Существенно расширился ассортимент эффективных керамических изделий, в том числе из пористой керамики. Оборудование для производства пустотелого кирпича и камня в основном импортное, приобретение которого началось в первые годы перестройки. В кирпиче и камне допустимые размеры щелевых пустот увеличены с 12 до 16 мм, диаметр вертикальных цилиндрических пустот и размер стороны квадратных пустот — с 16 до 20 мм. Более крупные пустоты введены в ГОСТ 530-95.При этом Госстрой России планировал поручить НИИ совместно со строителями разработать новые технологии кладки, исключающие заполнение пустот раствором, аналогичным зарубежным.
Поскольку работы по новым технологиям не завершены, большинство строительных организаций продолжают кладку стен по технологии, разработанной для полнотелого кирпича. В результате расход раствора для кладки стен увеличился с 0.От 20-0,24 м 3 до 0,3-0,4 м 3, что привело к набегам цемента 50-100 кг на кубометр кладки и раствора до 300 кг. Попавший в пустоты раствор снижает теплозащитные свойства стен без улучшения их прочностных свойств. Экспериментальные исследования температурно-влажностного режима кладки из современного пустотелого кирпича и камня позволили ввести требования в новый ГОСТ 530-2007, отражающие современную ситуацию в кирпичной промышленности и строительстве. Было бы неправильно вводить обязательные требования, ограничивающие размер пустот в кирпичах и камнях до 8-12 мм, так как это повлечет временную остановку для многих предприятий. В то же время избежать заполнения раствором пустоты размером более 12 мм можно при возведении стен с применением различных технологических приемов. Решение, принятое в ГОСТ 530-2007, позволяет фабрикам и строителям самостоятельно выбрать для себя более приемлемый вариант.
Новые требования, внесенные в стандарт, отражают заинтересованность строительной отрасли в объективной оценке тепловых характеристик продукции и улучшении ее качества.Определение коэффициента теплопроводности пустотелой кирпичной и каменной кладки будет проводиться на фрагменте стены, выполненной по технологии, исключающей заполнение пустот кладочным раствором. то есть с такой же скоростью потока по сравнению с полнотелыми. Данный метод позволяет производителю сравнивать тепловые характеристики своей продукции с производимой на других заводах, поскольку изготовление фрагмента стены для испытаний полностью исключает эффект нарушений технологии кладки стены, часто допускаемых в строительных условиях. .Свалить вину за снижение теплозащитных качеств на кирпичных заводах на строителей будет практически невозможно. При этом не запрещается проводить испытания пустотелых кирпичей и камней на фрагментах стен или непосредственно на стенах эксплуатируемого здания, построенного по технологии, применяемой для кладки полнотелого кирпича, что должно быть зафиксировано в протоколе испытаний. Полученные значения теплопроводности кладки в обоих направлениях могут быть использованы при проектировании наружных стен при соблюдении соответствующих коэффициентов теплопроводности технологического регламента, который является неотъемлемой частью конструкции здания.Данные в таблице D.2, приведенные в стандарте, позволяют производителю принять разумное решение по улучшению тепловых характеристик керамических стеновых или стеновых кирпичей и камня. Для этих целей желательно увеличить количество щелевых пустот за счет уменьшения их ширины с перекрытием через теплопроводящие керамические диафрагмы, чтобы увеличить пористость черепка.
Рациональный размер и расположение пустот в кирпичах позволят на 30% снизить теплопроводность кладки по сравнению с кладкой из кирпича с заполненными раствором пустотами стандартных размеров.Информация о тепловых свойствах кладки позволяет заказчику выбрать подходящую ему продукцию или поставить на заводе вопрос о производстве кирпича с уменьшенными пустотами и улучшенными теплозащитными свойствами. Дополнительные затраты заказчика на развитие производства пустотелого кирпича или камня с улучшенными теплофизическими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на кубометр кладки стен.
Установившаяся практика возведения стен из пустотелого теплоэффективного камня и кирпича по той же технологии, что и полнотелая, снизила конкурентоспособность огнестойких прочных конструкционных теплоизоляционных стен и облицовочного кирпича и камня по сравнению с явно худшими материалами в решении проблема энергосбережения и повышения прочности наружных стен.
В новый стандарт вводится новое требование, устанавливающее марку морозостойкости лицевого керамического кирпича не ниже Р 50. Это повышение связано с качественным изменением физических процессов в наружных стенах с повышенным уровнем термической стойкости. изоляция, что привело к большему количеству циклов внешних температурных переходов в облицовочном слое, что привело к преждевременному разрушению наружных стен.
Для определения морозостойкости кирпича принят метод объемного замораживания, более жесткий, чем метод одностороннего замораживания.Статистически обработанные результаты испытаний, полученные методом одностороннего замораживания, примерно на 20% дают больше, чем данные, полученные методом объемного замораживания. При разработке метода одностороннего замораживания считалось, что использование метода объемного замораживания приводит к «необоснованному» выбракованию практически прочных кирпичей и, как следствие, к дополнительным технологическим затратам. Также предполагалось, что пропущенный брак при испытании методом односторонней заморозки принесет меньший ущерб народному хозяйству, чем отбраковка хороших продуктов при замораживании больших объемов. Но практика эксплуатации зданий показала, что стоимость ремонта поврежденных участков на фасадах стен из допущенных к строительству бракованных кирпичей после испытаний методом одностороннего замораживания значительно превышает стоимость производства лицевого кирпича повышенной морозостойкости. . Это также создает большие трудности при ремонте подбором цвета лицевого кирпича, что приводит к ухудшению внешнего вида фасада построек.
Таблица. Тепловые свойства кирпичной кладки из пустотелого керамического кирпича
Название кирпича | Плотность, кг / м 3 | Расход раствора на 1 м 3 кирпичной кладки, м 3 | Массовая доля влажности кирпичной кладки в условиях эксплуатации В, ω,% | Теплопроводность кирпичной кладки, λ b, Вт / (м * o C) | Превышение в% наименьшего значения λ при ω = 1.![]() | |
---|---|---|---|---|---|---|
кирпичей | кладка | |||||
На цементно-известково-песчаном растворе ϒ = 1800 кг / м 3 | ||||||
Керамика | 1000 | 1180 | 0,23 | 1,8 | 0,43 | |
21 полый | 1000 | 1310 | 0,30 | 2,3 | 0,54 | 25,6 |
с размером пустот 20х20 мм | 1000 | 1490 | 0,40 | 2,9 | 0,59 | 37,2 |
Также | ||||||
Также | 1400 | 1490 | 0,23 | 1,8 | 0,56 | |
1400 | 1620 | 0,30 | 2,3 | 0,65 | 16,0 | |
1400 | 1800 | 0,40 | 2,9 | 0,70 | 25,0 | |
На цементно-песчаном растворе ϒ = 2000 кг / м 3 | Также | 1400 | 1540 | 0,23 | 1,8 | 0,58 |
1400 | 1680 | 0,30 | 2,3 | 0,74 | 27,6 | |
1400 | 1880 г.![]() | 0,40 | 2,9 | 0,77 | 32,8 |
Реализация требований межгосударственного стандарта значительно повышает роль производителей пустотелого керамического кирпича и камня во взаимоотношениях с проектировщиками и строителями в решении задачи повышения теплозащитных качеств и долговечности наружных энергетических стен. -эффективные здания.
Если бы материалы кладки находились в эксплуатации в сухом состоянии, то высокое содержание цементно-известково-песчаного раствора плотностью 1800 кг / м 3 не привело бы к заметному снижению теплозащитных качеств наружного кирпичные стены, так как его коэффициент теплопроводности (λ), равный в этих условиях 0,58 Вт / (м * o C), при такой же плотности с керамикой (1800 кг / м 3) немного превышает его теплопроводность, равную 0,55 Вт / (м * o C). Но, к сожалению, они в условиях эксплуатации имеют существенно разную влажность, что значительно увеличивает λ стены. Сорбционная влажность цементно-известково-песчаного раствора приближается к 5%, а полнотелого керамического кирпича не превышает 1%.
Сорбционная влажность стеновых и облицовочных материалов из пористой керамики, например, ОАО «Победа ГРП», как правило, не превышает 0,6%. Экспериментально определенная эксплуатационная влажность кирпичной кладки на образцах, взятых со стен с массовым соотношением материалов (кирпич: раствор) 3: 1 при относительной влажности наружного воздуха φ n = 97%, соответствующей Sri в январе месяце (г. Москва). , Г.-Петербург), это значительно большее значение. Уместно отметить преимущество этой стены из пористой керамики (рис. 1). На его меньшее значение рабочей влажности повлияла не только особенность пористой структуры, но и значительно меньшее количество раствора в стенках из крупноформатных керамических камней. В условиях эксплуатации кирпичная стена собирает наибольшее количество влаги в период максимального накопления влаги, то есть в марте месяце. В этот период кирпич и раствор находятся в супервпитывающем состоянии.Собравший влагу раствор в результате контакта отдает ее порам кирпича, увеличивая общую влажность кладки. Влага, закрытая большими порами, имеет теплопроводность 0,55 Вт / (м * o C), что почти в 20 раз превышает теплопроводность влажного воздуха, равную 0,027 Вт / (м * o C). В сильные морозы часть накопленной влаги в известково-цементно-песчаном растворе и в гораздо меньшем объеме в керамике превращается в лед, теплопроводность которого равна 2.3 Вт / (м * o C), что в 4 раза превышает теплопроводность жидкой влаги. Кроме того, образовавшийся лед является преградой в стене на пути выхода пара из помещения. Это увеличивает влажность материалов и снижает теплозащитные качества стены и морозостойкость облицовочного кирпича в слое облицовки.
По этим причинам на основании результатов натурных и лабораторных исследований расчетное (нормативное) значение рабочей влажности плотной кирпичной кладки для условий эксплуатации B принято равным 2%, что значительно превышает максимальную сорбционную влажность керамики, равную 1%.Для раствора цементно-известкового раствора стандартное значение влажности для условий эксплуатации B принято равным 4%. Это немного ниже максимального значения сорбции 5-6%. Часть влаги из раствора переносится на соседнюю керамику. Особенно это заметно в кладке из пустотелого кирпича, у которой более развитая внешняя поверхность, контактирующая с влажным раствором, почти вдвое больше, чем у полнотелого. Да и раствора в кладке из пустотелого кирпича на 30-40% больше, чем в кладке из полнотелого.Таким образом, пустотелый кирпич быстрее переходит в состояние эксплуатационной влажности.
Определение количественных зависимостей влияния кладочного раствора на влажностный режим стен проводилось в климатической камере на трех фрагментах стен размером 1,8 х 1,8 х 0,38 м, изготовленных в ЦНИИСК им. В.А. Кучеренко вместе с НИИСФ. В кирпичах использовался Голицынский завод с шириной пазов 12, 16 и 20 мм. При изготовлении осколков измеряется расход раствора.Аналогичные испытания проводились в естественных условиях и в климатической камере на стенах толщиной 640 мм из кирпича с квадратными пустотами 20 x 20 мм. Изготовление фрагментов стен для испытаний производилось квалифицированными каменщиками при фиксированном расходе раствора 0,23 м3, 0,3 и 0,4 м3 на кубометр кладки. Раствор был нанесен цементно-известково-песчаным плотностью 1800 кг / м 3 состава 1: 0,9: 8 (цемент: известь: песок) по объему на портландцемент марки 400 с осадкой 9 см. Стены, испытанные в натурных условиях, были выполнены по технологии, разработанной для полнотелого кирпича, то есть с частичным заполнением пустот раствором.Консистенция и плотность раствора не контролировались. Было разрешено «омолодить» неиспользованный до обеда раствор, то есть с нарушениями технологических регламентов, присущих условиям строительства. Таким образом, результаты тепловых испытаний кладки стен в естественных условиях значительно в худшую сторону отличались от результатов, полученных в климатической камере. Анализ результатов испытаний проводился по данным, полученным в климатической камере. Фрагменты стен выполнены из 21-полого кирпича плотностью 1000 кг / м 3 и 1400 кг / м 3 с размером пустот 20 х 20 мм.Фрагменты укладывались на цементно-известково-песчаный раствор плотностью 1800 кг / м 3 с осадкой конуса 9 см. Толщина горизонтальных швов раствора составляла 12 мм, вертикальных 10 мм. Для сравнения теплотехнической эффективности фрагментов стены первый был выполнен по технологии, полностью исключающей заполнение пустот раствором, то есть по технологии соответствующая кладка из полнотелого кирпича. Расход раствора составил 0,23 м3. Второй и третий фрагменты изготовлены соответственно с расходом 0.3 м 3 и 0,4 м 3 на один кубометр кладки, то есть с частичным заполнением пустот. Плотность кладки из пустотелого кирпича плотностью 1000 кг / м 3 соответственно составила 1180 кг / м 3, 1310 кг / м 3 и 1490 кг / м 3. Из пустотелого кирпича плотностью 1400 кг / м 3. плотность увеличилась до 1492 кг / м 3, 1618 кг / м 3 и 1798 кг / м 3.
Для достижения состояния равновесной влажности, соответствующего воздушно-сухому состоянию в климатической камере, перед испытаниями при t B = 20 o C, φ B = 40% фрагменты хранились в специальном помещении.Поскольку наступление стационарных условий диффузии водяного пара требует длительного времени, исследования в климатической камере проводились в течение трех месяцев при t H = -20 o C, t B = 20 o C. Были взяты образцы материалов для определения влажности. в соответствии с расходом на 1 м 3 стены. То есть при расходе 0,23 м 3 это соотношение составляло 1: 3 (одна часть раствора: три части керамики), на 0,3 м 3 брали 1: 2, а при 0,4 м 3 соответственно. 1: 1,5. В кладке, выполненной с нормой расхода 0.23 м 3 влажность керамики с 0,2% в воздушно-сухом состоянии увеличилась до 1,2% с максимальным значением 2,2% на расстоянии 0,33 толщины стенки от внешней поверхности. Влажность раствора в этом месте составляет 5,4% при среднем значении 3,3%. Среднее массовое соотношение влажности кладки составило 1,8% при максимальном значении 3,8%. При увеличении расхода раствора до 0,3 м 3 на 1 м 3 кладки из пустотелого кирпича среднее значение влажности кладки составляет 2.3%; при расходе раствора 0,4 м 3 влажность кладки увеличилась до 2,9% (рис. 2). В последних двух случаях среднее соотношение массы влаги, соответственно, было на 15% и 45% выше стандартного значения, равного 2%. Во всех трех случаях массовое соотношение влажности (максимальное и среднее значения) цементно-известково-песчаного раствора в кладке практически не увеличивается и, тем более, не уменьшается. Среднее значение влажности кладки растет быстрее, чем влажность раствора.Очевидно, это связано со способностью раствора отдавать сверхабсорбированную влагу керамике при контакте и компенсировать потерянное количество из-за диффузии водяного пара из теплого помещения.
Теплопроводность кладки из пустотелого кирпича с диапазоном плотности 1000-1400 кг / м 3, которой практически соответствует практически весь пустотелый кирпич, производимый нашей промышленностью, при расходе раствора 0,23 м 3 в сухом состоянии составляет в диапазоне от 0,26 до 0,41 Вт / (м * o C). Разница не превышает 16%.
При увеличении расхода раствора до 0,3 м 3 плотность кладки, например, из пустотелого кирпича ϒ = 1000 кг / м 3 увеличивается с 1180 кг / м 3 до 1310 кг / м 3. При расходе 0,4 м 3 плотность кладки повышается до 1490 кг / м 3. Средняя влажность кирпичной кладки колеблется от 1,8% до 2,3% и 2,9% соответственно. Такое изменение влажности и плотности приводит к увеличению теплопроводности стены с 0,43 до 0.54 Вт / (м * o C) и 0,59 Вт / (м * o C), то есть на 25,6% и 37 соответственно на 2%. При плотности кирпича 1400 кг / м 3 в результате увеличения расхода раствора до 0,3 м 3 и 0,4 м 3 коэффициент теплопроводности кирпичной стены увеличивается с 0,56 Вт / (м * o С). до 0,65 и 0,70 Вт / (м * o С), то есть на 16% и 25,0%. Более существенное увеличение теплопроводности пустотелой кирпичной стены плотностью 1400 кг / м 3 происходит при использовании кладочного цементно-песчаного раствора плотностью 2000 кг / м 3, при том же расходе раствора равном 0.3 м 3 и 0,4 м 3 значение коэффициента теплопроводности увеличивается до 0,74 Вт / (м * o C и 0,77 Вт / (м * o C), то есть на 27,6% и 32,8%. Это также приводит к увеличению по плотности кладки (рис. 3, табл.). Однако следует отметить, что наличие кладочного цементно-известково-песчаного раствора плотностью 1800 кг / м 3 в пустотах кирпича оказывает меньшее влияние на увеличение теплопроводности стены по сравнению с увеличением ее влажности. Это связано с рыхлым состоянием раствора в пустотах, который представляет собой частицы (комки) неправильной формы, разделенные воздушными небольшими полостями.и примерно равна плотности уложенного пустотелого керамического кирпича (брутто).
Кроме того, раствор, попавший в пустоты, разделил большую воздушную полость на несколько воздушных пространств, каждая из которых в результате полного прекращения теплопередачи конвекцией имеет дополнительное тепловое сопротивление в стене. Создаваемое изменение условий теплообмена в какой-то мере компенсирует влияние избытка раствора на снижение теплозащитных качеств пустотелых кирпичных стен.Значительно худшие влажностные условия образуются в пустотах в результате применения кладочного тяжелого раствора плотностью 2000-2200 кг / м 3, особенно с повышенной консистенцией. Жидкий раствор легко проникает в пустоты, оседает в «литом» виде. Плотность, влажность и теплопроводность тяжелого раствора в воздушном зазоре практически не отличается от теплофизических параметров раствора, находящегося в горизонтальных швах кладки. Влажность тяжелого раствора в кирпичной кладке может увеличиваться до 6-8%, что изменяет влажность и теплопроводность стены на 30-40%.Разрушение кладочного раствора в пустотах создает для каменщиков большие проблемы в создании равномерного слоя раствора в горизонтальных швах кладки. Неудачный раствор образует щели в горизонтальных швах, создавая благоприятные условия для циркуляции воздуха в пустотах. Созданная таким образом продольная фильтрация воздуха снижает теплотехническую эффективность полых керамических стеновых и облицовочных материалов. Для того чтобы исключить условия попадания кладочного раствора в пустоты и создания ровного горизонтального шва без разрывов, ОАО «Победа ЛСР» начало реализацию крупноформатных пустотелых керамических изделий в обязательном порядке применять сетки с ячейками не более 10 х 10 мм. укладка в горизонтальные швы раствора.
Повышенная плотность и влагопоглощающая способность кладочного раствора в условиях эксплуатации наружных стен зданий значительно снижает теплозащитные свойства кирпича, уложенного на заводе. Негативное влияние тяжелого цементно-песчаного раствора может превышать тепловой эффект, получаемый от рационального расположения пустот и пористости керамики. Поэтому кладку пустотелого кирпича с пористой керамикой следует производить на легких (теплых) растворах с пониженной водопоглощающей способностью, достигаемой введением гидрофобных добавок.В зарубежной строительной практике при возведении стен руководствуются принципом соблюдения теплоизоляционных свойств кладочного раствора по теплоэффективности кирпича. Отечественной промышленностью для этих целей освоен выпуск широкого ассортимента теплых кладочных растворов плотностью от 1600 до 500 кг / м 3, теплопроводностью от 0,81 до 0,21 Вт / (м * o С). На строительном рынке большой объем аналогичной продукции и зарубежных фирм. Отмеченные выше различия теплофизических свойств кирпичной кладки из одного и того же кирпича, но на растворах с разными физическими параметрами, создают определенные трудности при построении объективной зависимости коэффициента теплопроводности от плотности.Однако эта зависимость используется во многих зарубежных странах. В некоторых странах его устанавливают в зависимости от плотности кладки. Если установлена зависимость теплопроводности от плотности кирпича, то указываются конкретные характеристики применяемого кладочного раствора. В отечественной строительной практике с 1962 года кладку производили на тяжелый раствор (СНиП НА. 7-62). Конкретное значение плотности и расхода раствора на кубометр кладки не указано. Из-за отсутствия информации о удельной плотности раствора значение теплопроводности кирпичной кладки, указанное в нормативном документе, в настоящее время не может быть четко понято, поскольку категория «тяжелые растворы» охватывает диапазон плотности от 1700 до 2200 кг / м 3 с разницей А до 40-50%.
Конечно, сегодня можно было бы признать, что приведенные данные соответствуют муфтам, изготовленным на растворе плотностью 1800 кг / м 3, если в последующей редакции СНиП И-А. 7-71 для всей кирпичной кладки плотностью от 1000 до 1800 кг / м 3 с одинаковыми значениями коэффициентов теплопроводности не указано, что они выполняются на каком-либо растворе. В редакции СНиП II-3-79 полностью сохранены значения А для пустотелой кирпичной кладки. Но для каждой плотности кладки добавлена информация о плотности кирпича.Что касается слов «на любой раствор» или «тяжелый раствор», то они были заменены «на цементно-песчаный раствор» без указания плотности. В последующих редакциях СНиП 11-3-79 1982 и 1998 годов эти данные сохраняются. Они переехали в СП 23-101-2004 и отражают свойства, как и в 1962 году, трех типов пустотелого кирпича.
Такой неспецифический подход к нормированию теплопроводности керамического кирпича и камня был в некоторой степени терпимым до 1980 г. и даже до 1990 г., поскольку объем пустотелого кирпича в общем производстве керамических материалов не превышал 0.5%. В настоящее время его доля приближается к 80%. Номенклатура расширилась до 50 наименований. Заводы освоили новые технологии и перешли на более качественный уровень производства керамических изделий из пористой керамики в виде морозостойких кирпичей, крупноформатных камней, соответствующих размером от 4 до 15 условных кирпичей. Это позволило выполнить кладку из некоторых видов камней в несколько раз, чтобы снизить расход раствора. Использование пористой керамики, рациональное расположение пустот в кирпиче при большом разнообразии их форм позволило значительно улучшить тепловые свойства кирпича.
В нормативных документах СП 23-101-2004 пока не нашли отражения тепловые характеристики современных керамических изделий. Имеющиеся данные по трем типам пустотелого кирпича использовать нельзя, так как размер пустот в них не соответствует утвержденным параметрам в ГОСТ 530-95. Поэтому были проанализированы данные 70 заводов по теплопроводности производимых кирпичей и камней, полученные при испытаниях в аккредитованных лабораториях без заполнения пустот.Полученные статистически обработанные данные представлены на рис. 4.
По указанным выше причинам, приведенные на рис.4 данные по теплопроводности пустотелой кирпичной кладки плотностью 1000-1400 кг / м 3, выполненной без заполнения пустот раствором, несколько ниже приведенных данных. в СНиП о строительной теплотехнике с частичным заполнением пустот раствором, позже перенесенный в СП 23-101-2004. Наблюдаются некоторые различия в теплопроводности по сравнению с зарубежными данными.Например, кладка из крупноформатных камней пористой керамикой российского производства имеет более высокие значения теплопроводности.
Информация о теплофизических свойствах кладки из разных видов кирпича, которой будет располагать производитель, позволит заказчику выбрать подходящую ему продукцию или поставить на заводе вопрос о производстве кирпича с уменьшенными пустотами и улучшенными теплозащитными свойствами. Дополнительные затраты заказчика на развитие производства пустотелого кирпича или камня с улучшенными теплофизическими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на кубометр кладки стен.
Б / у книги
- ГОСТ 530-80. Керамический кирпич и камень. Технические условия. М., 1980.
- ГОСТ 530-95. Керамический кирпич и камень. Общие технические условия. М., 1995.
- ГОСТ 530-2007. Керамический кирпич и камень. Общие технические условия. М., 2007. .
- СНиП II-А. 7-62. Строительная теплотехника. Стандарты дизайна. М., 1963.
- СНиП II-А. 7-71. Строительная теплотехника. Стандарты дизайна. М., 1971.
- СНиП II-3-79.Строительная теплотехника. Стандарты дизайна. М., 1979.
- СП 23-101-2004. Проектирование тепловой защиты зданий. М., 2004. .
А.И. Ананьев , НИИСФ РААСН
Б.П. Абарыков , Минмособлстрой
С.А. Бегулев , А.С. Буланы ОАО «Победа ЛСР»
Журнал «Строительные технологии» 4 (66) / 2009
Мониторинг тепловых характеристик пустотелого кирпича с различными заполнителями пустот в разных климатических условиях
Я. Млакар, Я. Штранкар, корп. Environ. 60 , 185 (2013)
Артикул Google ученый
К. Грегори, Б. Могтадери, Х. Суго, А. Пейдж, Energy Build. 40 , 459 (2008)
Артикул Google ученый
E. Kossecka, J. Kosny, Energy Build. 34 , 321 (2002)
Артикул Google ученый
З. Павлик, А. Трник, Я. Ондрушка, М. Кепперт, М. Павликова, П. Вольфова, В. Каулич, Р. Черны, Int. J. Thermophys. 34 , 851 (2013)
Артикул ОБЪЯВЛЕНИЯ Google ученый
Н. Асте, А. Анджелотти, М. Бузетти, Energy Build. 41 , 1181 (2009)
Артикул Google ученый
М. Йиржичкова, З. Павлик, Л. Фиала, Р. Черны, Int.J. Thermophys. 27 , 1214 (2006)
Артикул ОБЪЯВЛЕНИЯ Google ученый
З. Павлик, Э. Веймелкова, Л. Фиала, Р. Черны, Int. J. Thermophys. 30 , 1999 (2009)
Артикул ОБЪЯВЛЕНИЯ Google ученый
Р. Черны, П. Ровнаникова, Транспортные процессы в бетоне , 1-е изд. (Spon Press, Лондон, 2002)
Google ученый
Йирсак О., Гок Т., Озипек Б., Пан Н., Текст. Res. J. 68 , 47 (1998)
Статья Google ученый
D.R. Салмон, Р. П. Тай, Дж. Билд. Phys. 34 , 247 (2011)
Артикул Google ученый
З. Павлик, Л. Фиала, Р. Черны, Int. J. Thermophys. 34 , 909 (2013)
Артикул ОБЪЯВЛЕНИЯ Google ученый
H.S. Carslaw, J.C. Jaeger, Проводимость тепла в твердых телах, , 2-е изд. (Кларендон Пресс, Оксфорд, 1988)
Google ученый
К.Д. Антониадис, М.Дж. Ассаэль, К.А. Циглифиси, С.К. Mylona, Int. J. Thermophys. 33 , 2274 (2012)
М.П. Моралес, М. Хуарес, Л.М. Лопес-Очоа, Х. Доменек, Appl. Therm. Англ. 31 , 2063 (2011)
Артикул Google ученый
J.J. Диас, П.Дж.Г. Ньето, J.L.S. Sierra, C.B. Biempicam, Int. J. Heat Mass Transf. 51 , 1530 (2008)
Артикул МАТЕМАТИКА Google ученый
J.J. Диас, П.Дж.Г. Ньето, К.Б. Бьемпика, М.Б.П. Gero, Appl. Therm. Англ. 27 , 1445 (2007)
Артикул Google ученый
А. Бушар, корп. Environ. 43 , 1603 (2008)
Артикул Google ученый
Л.П. Ли, З.Г. Ву, Ю.Л. Он, Дж. Лориа, W.Q. Дао, Энергетика. 40 , 1790 (2008)
Артикул Google ученый
J. Sun, L. Fang, J. Han, Int. J. Heat Mass Transf. 53 , 5509 (2010)
Артикул МАТЕМАТИКА Google ученый
К. Василе, С. Лоренте, Б. Перрен, Energy Build. 28 , 229 (1998)
Артикул Google ученый
M.A. Antar, H. Baig, Appl. Therm. Англ. 29 , 3716 (2009)
Артикул Google ученый
М.М. Хэзми, Energy Build. 38 , 515 (2006)
Артикул Google ученый
М. Жуковски, Г. Хезе, Energy Build. 42 , 1402 (2010)
Артикул Google ученый
З. Павлик, Р. Черны, Energy Build. 40 , 673 (2008)
Артикул Google ученый
З. Павлик, Р. Черны, Прил. Therm. Англ. 29 , 1941 (2009)
Артикул Google ученый
З. Павлик, Л. Фиала, Э. Веймелкова, Р. Черны, Int. J. Thermophys. 34 , 894 (2013)
Артикул ОБЪЯВЛЕНИЯ Google ученый
Л.М. Аль-Хадрами, А. Ахмад, Appl. Therm. Англ. 29 , 1123 (2009)
Артикул Google ученый
Изоляция чердаков — Введение
Когда вы начнете рассматривать изоляционные материалы, такие как изоляция чердаков, вы можете быстро увязнуть в некоторых довольно сложных технических терминах. В этой статье мы постараемся упростить их, чтобы вы могли постоять за себя, находясь в местном магазине DIY!
Теплопроводность изоляционных материалов
Теплопроводность, также известная как лямбда (обозначается греческим символом λ), является мерой того, насколько легко тепло проходит через определенный тип материала, не зависит от толщины материала, о котором идет речь.
Чем ниже теплопроводность материала, тем лучше тепловые характеристики (то есть тем медленнее тепло будет проходить по материалу).
Измеряется в ваттах на метр по Кельвину (Вт / мК).
Чтобы вы почувствовали себя изоляционными материалами — их теплопроводность варьируется от примерно 0,008 Вт / мК для панелей с вакуумной изоляцией (так что это лучшие, но очень дорогие!) До примерно 0,061 Вт / мК для некоторых видов древесного волокна. .
>>> НАЖМИТЕ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ О U-ЗНАЧЕНИЯХ ИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ <<<
Если бы вы использовали овечью шерсть для утепления своей собственности, это примерно 0.034 Вт / мК, примерно как у большинства других изоляционных материалов из шерсти и волокна.
Значения R
R-значение — это мера сопротивления тепловому потоку через материал данной толщины. Таким образом, чем выше значение R, тем большее термическое сопротивление имеет материал и, следовательно, лучше его изоляционные свойства.
R-значение рассчитывается по формуле
Где:
l — толщина материала в метрах и
λ — коэффициент теплопроводности в Вт / мК.
Значение R измеряется в метрах в квадрате Кельвина на ватт (м 2 K / Вт)
Например, тепловое сопротивление 220 мм монолитной кирпичной стены (с теплопроводностью λ = 1,2 Вт / мК) составляет 0,18 м 2 К / Вт.
Если вы изолируете сплошную кирпичную стену, вы просто найдете коэффициент сопротивления изоляции и затем сложите эти два значения. Если вы изолировали это полиизоциануратом с фольгой толщиной 80 мм (с теплопроводностью λ = 0,022 Вт / мК и значением R 0,08 / 0.022 = 3,64 м 2 К / Вт), у вас будет общее значение R для изолированной стены 0,18 + 3,64 = 3,82 м 2 К / Вт. Следовательно, это улучшит тепловое сопротивление более чем в 21 раз!
Таким образом, значение R — это относительно простой способ сравнить два изоляционных материала, если у вас есть теплопроводность для каждого материала. Это также позволяет увидеть эффект от добавления более толстых слоев того же изоляционного материала.В реальных зданиях стена состоит из множества слоев материала.Общее тепловое сопротивление всей стены рассчитывается путем сложения теплового сопротивления каждого отдельного слоя.
К сожалению, тепло входит и выходит из вашего дома несколькими различными способами, и значения R учитывают только теплопроводность. Он не включает ни конвекцию, ни излучение.
Поэтому вы можете выбрать значение U, которое учитывает все различные механизмы потери тепла — читайте дальше, чтобы узнать, как это рассчитывается!
U-значения
Значение U строительного элемента является обратной величиной полного теплового сопротивления этого элемента.Показатель U — это мера того, сколько тепла теряется через заданную толщину конкретного материала, но включает три основных способа, которыми происходит потеря тепла — проводимость, конвекция и излучение.
Температура окружающей среды внутри и снаружи здания играет важную роль при расчете теплопроводности элемента. Если представить себе внутреннюю поверхность участка 1 м² внешней стены отапливаемого здания в холодном климате, тепло поступает в этот участок за счет излучения от всех частей внутри здания и конвекции из воздуха внутри здания.Таким образом, следует учитывать дополнительные термические сопротивления, связанные с внутренней и внешней поверхностями каждого элемента. Эти сопротивления обозначаются как R si и R , так что соответственно с общими значениями 0,12 км² / Вт и 0,06 км² / Вт для внутренней и внешней поверхностей, соответственно.
Это мера, которая всегда находится в пределах Строительных норм. Чем ниже значение U, тем лучше материал как теплоизолятор.
Рассчитывается путем взятия обратной величины R-Value и последующего добавления тепловых потерь на конвекцию и излучение, как показано ниже.
U = 1 / [R si + R 1 + R 2 +… + R so ]
На практике это сложный расчет, поэтому лучше всего использовать программное обеспечение для расчета U-Value.
Единицы измерения — ватты на квадратный метр Кельвина (Вт / м 2 K).
Ориентировочно неизолированная полая стена имеет коэффициент теплопередачи около 1,6 Вт / м 2 K, а цельная стена имеет коэффициент теплопередачи около 2 Вт / м 2 K
Использование значений U, R и теплопроводности
Если вы сталкиваетесь с проблемами теплопроводности, R-значений и U-значений в будущем, вот 3 простых вещи, которые следует запомнить, чтобы убедиться, что вы получите лучший изоляционный продукт.
- Более высокие значения хороши при сравнении термического сопротивления и значений R продуктов.
- Низкие числа хороши при сравнении значений U.
- Коэффициент теплопроводности — это наиболее точный способ оценить изолирующую способность материала, принимая во внимание все различные способы потери тепла, однако его труднее вычислить.
Вы заинтересованы в установке домашних возобновляемых источников энергии? Мы прочесали страну в поисках лучших торговцев, чтобы убедиться, что мы рекомендуем только тех, кому действительно доверяем.Вы можете найти одного из этих мастеров на нашей простой в использовании карте местного установщика.
>>> ПЕРЕЙДИТЕ НА КАРТУ МЕСТНОГО УСТАНОВЩИКА <<<
Или же, если вы хотите, чтобы мы нашли для вас местного установщика, просто заполните форму ниже, и мы свяжемся с вами в ближайшее время!
Механические свойства и теплопроводность легких глиняных кирпичей, изготовленных с добавкой порошковой мраморной пыли
[1] С.Джанбуала, У. Киттави, М. Аермбуа, П. Лаоратанакул, Влияние золы рисовой шелухи на механические свойства глиняных кирпичей, Adv. Mater. Res. 77 (2013) 50–53.
DOI: 10.4028 / www.scientific.net / amr.770.50
[2] С.Джанбуала, Т. Васанапиарнпонг, Влияние рисовой шелухи и золы рисовой шелухи на свойства легких глиняных кирпичей, Key Eng. Mater. 659 (2015) 74–79.
DOI: 10.4028 / www.scientific.net / kem.659.74
[3] С.Борис, М. Борредон, Э. Ведренне, Г. Виларем, Разработка экологически безопасных пористых обожженных глиняных кирпичей с использованием порообразователей: обзор, J. Environ. Управлять. 143 (2014) 186–196.
DOI: 10.1016 / j.jenvman.2014.05.006
[4] Л.Чжан, Производство кирпича из отходов — Обзор, Констр. Строить. Mater. 47 (2013) 643–655.
[5] П.Муньос Веласко, М. Моралес Ортис, М. Мендивил Хиро, Л. Муньос Веласко, Обожженные глиняные кирпичи, полученные путем добавления отходов в качестве экологически устойчивого строительного материала — обзор, Констр. Строить. Mater. 63 (2014) 97–107.
DOI: 10.1016 / j.conbuildmat.2014.06.023
[6] ГРАММ.Горхан, О. Симсек, Пористые глиняные кирпичи, изготовленные из рисовой шелухи, Констр. Строить. Mater. 40 (2013) 390–396.
DOI: 10.1016 / j.conbuildmat.2012.09.110
[7] Я.Demir., S. Baspınar, M Orhan, Использование остатков производства крафт-целлюлозы при производстве глиняного кирпича, Build. Enviro. 40 (2005) 1533–1537.
DOI: 10.1016 / j.buildenv.2004.11.021
[8] С.Борис, М. Борредон, Э. Ведренне, Г. Виларем, Обожженные глиняные кирпичи с использованием отходов сельскохозяйственной биомассы: исследование и характеристика, Констр. Строить. Mater. 91 (2015) 158–163.
DOI: 10.1016 / j.conbuildmat.2015.05.006
[9] К.C.P. Фариа, Р.Ф. Гургель, J.N.F. Холанда, Переработка отходов золы сахарного тростника при производстве глиняных кирпичей, J. Environ. Управлять. 101 (2012) 7–12.
DOI: 10.1016 / j.jenvman.2012.01.032
[10] Я.Демир, Влияние добавления органических остатков на технологические свойства глиняного кирпича, Управление отходами. 28 (2008) 622–627.
DOI: 10.1016 / j.wasman.2007.03.019
[11] Ю.Абали, М.А.Юрдусев, С.Зейбек, А.А. Куманлыоглу, Использование фосфогипса и отходов концентраторов бора в производстве светлого кирпича, Констр. Строить. Mater. 21 (2007) 52–56.
DOI: 10.1016 / j.conbuildmat.2005.07.009
[12] Д.Элише-Кесада, К. Мартинес-Гарсиа, М.Л. Мартинес-Картас, М. Котес-Паломино, Л. Перес-Вилларехо, Н. Крус-Перес, Ф.А. Корпас-Иглесиас, Использование различных форм отходов при производстве керамического кирпича, Прил. Clay Sci. 52 (2011).
DOI: 10.1016 / j.clay.2011.03.003
[13] М.Sutcu, S. Akkurt, Использование остатков переработки вторичной бумаги при производстве пористого кирпича с пониженной теплопроводностью, Ceram. Int. 35 (2009) 2625–2631.
DOI: 10.1016 / j.ceramint.2009.02.027
[14] ASTM C373 — Метод испытаний на водопоглощение, объемную плотность, кажущуюся пористость и кажущуюся удельную массу обожженных продуктов из белой воды, Американское общество по испытаниям и материалам, (1994).
DOI: 10.1520 / c0373-88r99
[15] Н.С. Раут, П. Бисвас, Т. Бхаттачарья, К. Дас, Влияние добавления боксита на уплотнение и муллитизацию глины Западной Бенгалии, Bull. Mater. Sci. 31 (2008) 995–999.
DOI: 10.1007 / s12034-008-0156-4
[16] Ф.A.C. Milheiro, M.N. Фрейре, A.G.P. Сильва, J.N.F. Холанда, Поведение при уплотнении красной обжиговой бразильской каолинитовой глины, Ceram. Int. 31 (2005) 757–763.
DOI: 10.1016 / j.ceramint.2004.08.010
[17] Тайский институт промышленных стандартов, Тайский промышленный стандарт гончарного кирпича TISI 77 (2002).
[18] П. Мишра, А. Чакраверти, Х.Д. Банерджи, Исследования физических и термических свойств рисовой шелухи, связанные с ее промышленным применением, J.Mater. Sci. 21 (1986) 2129–2132.
DOI: 10.1007 / bf00547958
Испытания на теплопроводность глиняных кирпичей — Ассоциация земельного строительства Новой Зеландии
Физический факультет Университета Отаго проверил глиняные кирпичи, поставленные Ассоциацией земельного строительства Новой Зеландии (EBANZ) в октябре 2008 года.
Образцы
Все образцы представляли собой высушенные на солнце сырцовые кирпичи номинально 280 мм x 280 мм x 130 мм с различными наполнителями. Образец 1 содержал по 25% песчаной глины, бумажной массы, опилок и соломы, а образец 2 содержал больше соломы, чем 1.
Метод
NZS 4297 определяет предполагаемое тепловое сопротивление земляных стен, рассчитанное ниже. Согласно 4297, другие значения термического сопротивления могут использоваться при определении согласно NZS 4214.NZS 4214 разрешает использование теста игольчатого зонда, такого как ASTM D5334.
Поставляемые образцы были испытаны в соответствии с ASTM D5334, «Стандартный метод испытаний для определения теплопроводности почвы и мягких пород с помощью процедуры термического игольчатого зонда». Anter Quickline 30 использовался для измерения тепловых свойств. Каждое измерение проводилось в разных местах глиняного кирпича, чтобы убедиться в изменчивости образца.
Кирпичи были испытаны на уровень влажности при поставке, а затем высушены в печи в соответствии с NZS 4402 для определения плотности и содержания воды.
Результаты
Образец | Плотность в сухом состоянии [кг / м3] | Содержание воды [кг воды / кг почвы] | Теплопроводность [Вт / мК] 95% доверительные интервалы | N |
1 | 940 ± 20 | 4,6% | 0,30 ± 0,03 | 4 |
2 | 640 ± 10 | 6,9% | 0,20 ± 0,01 | 5 |
Термическое сопротивление эквивалентной стены рассчитано ниже по NZS 4214, включая сопротивление воздуха R 0.12. В таблице сравниваются результаты испытаний и номинальные значения NZS 4297:
.Образец | Стенка 280 мм [м2 К / Вт] | NZS 4297 280 мм | Стенка 350 мм [м2 К / Вт] | NZS 4297 350 мм |
1 | R 1,10 | R 0,7 | R 1,30 | R 0,8 |
2 | R 1,50 | R 0,7 | R 1,90 | R 0,8 |
Применимость
Результаты испытаний относятся к этим кирпичам.Кирпичи разной плотности, влажности и состава почвы будут иметь разные термические свойства.
Приложение:
NZS 4297 Инженерное проектирование земляных построек:
3.5 Теплоизоляция
3.5.1
Если иное не определено путем испытаний в соответствии с NZS 4214, R может приниматься равным 3.5.2.
3.5.2
Статическое термическое сопротивление стен складывается из термического сопротивления материала стены плюс термического сопротивления конвекции и излучения на поверхностях, которое выражается как постоянное сопротивление «воздуха».Для земляных стен тепловое сопротивление R можно принять равным 2,04 толщины стены в метрах плюс 0,12. Единицы измерения: m2 K / W
NZS 4214 Методы определения общего термического сопротивления частей зданий:
Теплопроводность материала или тепловое сопротивление сборки должны определяться ... полевыми измерениями с использованием зонда проводимости.
ASTM D5334 Стандартный метод испытаний для определения теплопроводности почвы и мягких пород с помощью процедуры термического игольчатого зонда
Обзор процедуры: Полностью вставьте зонд [игольчатый зонд Anter Quickline 30] в предварительно просверленное отверстие, используя термопасту.Запишите теплопроводность, начальную влажность и плотность в сухом состоянии. Начальная влажность и плотность в сухом состоянии определены в соответствии с NZS 4402: 1986.
NZS 4402: 1986 ИСПЫТАНИЕ 2.1 Определение содержания воды (в почве в процентах от сухой массы)
Обзор процедуры:
Взвесьте образец (Mw). Сушите образец при 105 ° C в течение 24 часов или до тех пор, пока масса не останется прежней в течение 4-часового периода сушки. Конечная масса - это сухая масса (Md). Содержание воды w = (Mw-Md) / Md. (В процентах от сухой массы)
Результаты согласуются с данными, цитируемыми в литературе (Adam, 1995).См. Диаграммы 1 и 2.
Адам, Э. А., и Джонс, П. Дж. (1995). Теплофизические свойства строительных блоков стабилизированного грунта. Строительство и окружающая среда, 30 (2), 245-253. DOI: 10.1016 / 0360-1323 (94) 00041-P
.
Диаграмма 1 — от Адамса, 1995, с новыми данными в голубых ромбах. Данные Адамса — сплошные и полые кружки.
Линиясоответствует стандарту DIN 4102-1169, цитируемому у Адамса. График 2 (внизу) — Только новые данные.
Данные от (Уокера)
Плотность в сухом состоянии кг / м3 | Теплопроводность Вт / мК |
1400 | 0.60 |
1600 | 0,80 |
1800 | 1,00 |
1900 | 1,30 |
2000 | 1,60 |
Уокер, П., Уокер, П., Промышленность, GBDOTA, Кибл, Р., Мартон, Дж., И Маниатидис, В. (2005). Утрамбованная Земля (с. 146).
Тепловые свойства строительных материалов
Предыдущие колонки технических данных охватывали тепловые свойства многих материалов, которые являются общими для упаковки электроники.Технические данные по этому вопросу шире по объему и касаются обычных строительных материалов, некоторые из которых используются в лабораторных условиях теплопередачи в дополнение к их обычным строительным применениям. Знания о теплопроводности и теплоемкости элементов, используемых для создания или поддержки испытательного набора, часто требуются для понимания и интерпретации результатов (или, по крайней мере, для понимания того, почему для достижения теплового равновесия требовалось так много времени).
В таблице 1 перечислены некоторые строительные материалы и их термические свойства при номинальной комнатной температуре.Металлы и сплавы не были включены, потому что они были рассмотрены ранее. Следует отметить, что эти значения являются приблизительными и репрезентативны для конкретного типа материала. Некоторые материалы поглощают воду, которая, в свою очередь, изменяет их свойства. Например, теплопроводность древесины во влажном состоянии может увеличиваться на 15%. Материалы, используемые в качестве изоляторов, которые полагаются на воздух, такие как одеяла из стекловолокна, демонстрируют большее изменение свойств во влажном состоянии. Стоит отметить, что диапазон значений теплопроводности для этих материалов довольно скромный (порядка двух порядков).
Таблица 1. Тепловые свойства конструкционного материала при комнатной температуре [1-4]
|
Рост затрат на электроэнергию и осознание того, что минимизация нежелательной теплопередачи является выгодной, продолжает стимулировать использование строительных методов и материалов с меньшим энергопотреблением. Преимущества эффективного терморегулирования внутренней электроники также должны сочетаться с термически эффективной конструкцией помещения. Использование изолирующих материалов (с низкой теплопроводностью) может быть желательным, но природа не обеспечила настоящих теплоизолирующих материалов, по крайней мере, по сравнению с диапазоном выбора материалов для электропроводности.Исследование термических свойств этих типов материалов приведет к получению данных со значительными отклонениями из-за различий в составе и различных условий испытаний.
Для многих материалов данные могут быть найдены в виде значения R. Значение R представляет собой обратную величину теплопроводности и измеряется в футах 2 ��F�h / Btu (иногда данные отображаются в единицах СИ, равных K�m 2 / Вт и обычно обозначаются как RSI). Более высокое значение R указывает на более ограниченный путь теплового потока.При условии, что указана толщина, можно получить приблизительную теплопроводность. Однако путаница и разногласия по поводу экстраполяции значений R на значение толщины и тот факт, что большинство этих материалов используются в средах с влажностью и движущимся воздухом и подвержены старению, вынудили стандарты в отношении того, как их следует измерять, сообщать и рекламировать [5,6]. Если требуются более чем приблизительные значения, обычно требуется дальнейшее тестирование.
Источники- Incropera, F., Де Витт, Д., Введение в теплопередачу, 2-е издание, John Wiley and Sons, 1990.
- www.goodfellows.com
- Веб-сайт удобной низкоэнергетической архитектуры (http://www.learn.londonmet.ac.uk /packages/clear/index.html)
- www.coloradoenergy.org/procorner/stuff/r-values.htm
- ASTM C1303, «Стандартный метод испытаний для оценки долгосрочного изменения термического сопротивления неизолированных жестких закрытых -Ячеистый пенопласт путем нарезки и масштабирования в лабораторных условиях.