Перейти к содержанию
Гардеробные системы elfa, раздвижные двери, межкомнатные перегородки

Таблица сварки полуавтоматом: Как правильно настроить сварочный полуавтомат. Таблица настройки полуавтомата для сварки

20.04.2021 автор alexxlab

Содержание

  • Как настроить сварочный полуавтомат, отрегулировать величину тока, напряжения и скорость подачи проволоки
    • Возможности оборудования
    • Рекомендации в инструкции
    • Настройка тока и скорости подачи проволоки
    • Регулировка параметров
    • Типичные ошибки
  • Настройка полуавтомата для сварки: как для работы с тонким металлом, таблицы
    • Внешнее влияние на настройки
      • Газозащита
        • Подбор газовой смеси
      • Настройка напряжения
      • Скорость подачи проволоки
      • Полярность
      • Вылет и выпуск проволоки
      • Настройка дуги
        • Управление скоростью подачи проволоки
      • Перед началом работы
        • Влияние величины напряжения на качество шва
      • Возможные проблемы и ошибки
  • Как правильно настроить сварочный полуавтомат, признаки неверной настройки
    • Параметры настроек
    • Рекомендации по настройке 
      • Подбор газовой смеси
      • Настройка напряжения
      • Настройка скорости подачи проволоки
      • Регулировка полярности
      • Настройка вылета проволоки
    • Самые частые сбои и их признаки
    • Приобретение сварочных полуавтоматов
  • Режимы и методы сварки, использование полуавтоматов
    • Особенности использования полуавтомата для MIG-MAG сварки
    • Параметры режимов сварки
    • Настройка расхода газа в сварочной горелке.
  • Настройка полуавтомата для сварки своими руками
    • Техника безопасности при работе с полуавтоматом
    • Что влияет на настройку аппарата
      • Толщина металла
      • Наличие газовой среды и ее состав
      • Полярность и необходимое напряжение
      • Положение электрода и подача проволоки
    • Начальные настройки
    • Общая детальная таблица настроек автомата
  • Режимы сварки в защитных газах
      • Режимы сварки в защитных газах ( СO
      • Режимы сварки в защитных газах ( СO
      • Режимы сварки (ориентировочные) углеродистых сталей в углекислом газе
    • Режимы сварки в защитных газах
  • Полуавтоматическая сварка (MIG)
  • Помещения № 130 и № 132 — Технологии сварочного производства
    • Лебединая пристройка, номера № 130 и № 132
      • Основные лаборатории: (2) процессы ручной и полуавтоматической сварки
  • Дуговая сварка под флюсом (SAW) — Weld Guru
        • SAW
    • Преимущества SAW
    • Основные области применения SAW
    • Ограничения процесса
    • Принципы работы
      • Процесс
      • Нормальный метод применения и возможности положения
      • Металлы свариваемые и диапазон толщины
      • Совместное проектирование
      • Сварочная цепь и ток
      • Скорость наплавки и качество сварки
      • Графики сварки
      • Сварочные переменные
      • Советы по использованию процесса
      • Варианты процесса SAW
        • Многопроволочные системы
        • Двухпроводной тандем
        • Трехпроводная тандемная система
        • Система сварки лент
        • Прочие опции
      • Типичные области применения
    • Используемые материалы
    • Ссылки на SAW
  • K11-100 100-миллиметровый патрон + мини сварочный позиционер BY-10 Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка — специальное предложение # 4CFF5
    • K11-100 100-миллиметровый патрон + сварочный мини-позиционер BY-10 Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка Технические характеристики
    • K11-100 100 мм патрон + BY-10 Mini Сварочный позиционер Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка Описание
  • 6 Высота рабочего стола
  • Роботизированная и ручная сварка | Fairlawn Tool Inc.
  • Сварочная витрина Два | Производство и металлообработка
  • Сварка

Как настроить сварочный полуавтомат, отрегулировать величину тока, напряжения и скорость подачи проволоки

Сварочный полуавтомат является очень удобным устройством для работы дома и в маленьких мастерских. С ним можно работать в любых условиях, не требуется особая подготовка рабочего места, он компактен почти как обычный инвертор.

В отличие от ручной дуговой сварки, для работы с ним не требуется высокая квалификация сварщика. Правильная настройка сварочного полуавтомата позволяет выполнять качественно работы и сварщику невысокой квалификации.

В зависимости от вида свариваемого материала, его толщины требуется правильно выставить скорость подачи проволоки, защитного газа. Дальше сварщику требуется равномерно вести горелку вдоль шва, и получится качественный сварной шов. Вся сложность заключается в правильном подборе параметров сварки для конкретного материала.

Возможности оборудования

Для качественной настройки сварочного полуавтомата требуется понимание характеристик сварки, необходимо также разобраться с особенностями полуавтомата.

Сварочные полуавтоматы позволяют работать практически с любыми металлами и их сплавами. Они могут сваривать цветные и черные металлы, низкоуглеродистую и легированную сталь, алюминий и материалы с покрытиями, способны сваривать тонкие металлы толщиной до 0,5 мм, могут варить даже оцинкованную сталь без повреждения покрытия.

Это достигается за счет того, что в область сварки может подаваться флюс, порошковая проволока или защитный газ, а также сварочная проволока, причем подача происходит автоматически, все остальное делается как в ручной дуговой сварке.

Сварочные полуавтоматы выпускаются разных классов, но все они состоят из:

  • блока управления;
  • источника питания;
  • механизма подачи сварочной проволоки с катушкой;
  • сварочной горелки;
  • силовых кабелей.

Кроме этого должен быть баллон с редуктором и инертным газом (двуокись углерода, аргон или их смеси), воронка для флюса.

Механизм подачи проволоки состоит из электродвигателя, редуктора и подающих или тянущих роликов.

Рекомендации в инструкции

Перед производством работ необходимо надежно заземлить аппарат для сварки и только потом начинать настройку. Сварочный полуавтомат нужно подключить к газобаллонной системе с защитным газом.

Необходимо проверить наличие сварочной проволоки в катушке, если нужно перезарядить ее и протянуть до рукоятки горелки. Скорость подачи газа имеет большое значение в процессе сваривания.

Поэтому ее тоже нужно установить. Газобаллонное оборудование имеет редукторы с указанием расхода газа в литрах. Это очень удобно, необходимо просто выставить требуемый расход в пределах 6-16 литров.

В инструкции по эксплуатации на устройство даются рекомендации, как правильно настроить сварочный полуавтомат, каким током варить конкретный металл, с какой скоростью подавать проволоку.

В инструкции должны быть специальные таблицы, в которых все расписано. Если выставить все параметры в соответствии с ними, то должно все получиться.

На практике могут быть сложности. На качество сварки полуавтомата влияют очень много параметров. Если питающая сеть не соответствует нормативам, то источник питания будет выдавать напряжение и ток не тот, что нужно, параметры будут нестабильны.

Температура среды, толщина металла, его вид, состояние свариваемых поверхностей, вид шва, диаметр проволоки, объем подачи газа и много других факторов влияют на качество сварки полуавтомата.

Таблицы рекомендуемых режимов сварки даются для определенных условий, которые не всегда можно обеспечить. Поэтому при сварке полуавтоматом многие регулировки осуществляются опытным путем.

Конечно, первоначально выставляются рекомендованные значения, потом идет точная подстройка параметров сварки.

Настройка тока и скорости подачи проволоки

В первую очередь выставляется сила сварочного тока, которая зависит от вида свариваемого материала и толщины заготовок. Это можно выяснить по инструкции на полуавтомат или найти в соответствующей литературе.

Затем устанавливается скорость подачи проволоки. Она может регулироваться ступенчато или плавно. При ступенчатой регулировке не всегда удается подобрать оптимальный режим работы. Если есть возможность выбора устройства, покупайте сварочный полуавтомат с плавной регулировкой скорости подачи проволоки.

В блоке управления должен быть переключатель режима подачи проволоки вперед/назад. Когда все настройки в соответствии с инструкцией по эксплуатации на полуавтомат произведены, нужно попробовать работу на черновом образце с такими же параметрами. Это необходимо делать потому, что рекомендации усредненные, а в каждом отдельном случае условия уникальны.

При большой скорости подачи провода электрод просто не будет успевать расплавляться, сверху будут большие наплавления или сдвиги, а при низкой он будет сгорать, не расплавляя свариваемый металл, валик шва будет проседать, появятся углубления или разрывы.

Регулировка параметров

Регулировка величины тока или напряжения зависит от толщины заготовок. Чем толще свариваемое изделие, тем больше сварочный ток. В простых устройствах полуавтоматической сварки регулировка силы тока совмещена со скоростью подачи проволоки.

В профессиональных полуавтоматах регулировки раздельные. Правильность настройки можно определить только опытным путем, сделав экспериментальный шов на пробной заготовке. Валик должен быть нормальной формы, дуга устойчивой, без брызг.

В некоторых моделях полуавтоматов имеется регулировка индуктивности (настройки дуги). При маленькой индуктивности температура дуги падает, глубина проплавления металла уменьшается, шов становится выпуклым.

Это используется при сваривании тонких металлов и сплавов, чувствительных к перегреву. При большой индуктивности температура плавления растет, сварочная ванна становится более жидкой и глубокой. Валик шва становится плоским. Сварку в этом режиме используют для толстых заготовок.

Переключатель скорости подачи сварочной проволоки в моделях способных работать с разными диаметрами требует дополнительной регулировки с учетом конкретной толщины проволоки.

Даже изучив полностью рекомендации производителя не всегда можно получить нужный режим работы полуавтомата.

Выставив оптимальные регулировки для сварки заготовки сегодня, может получиться, что на следующий день они станут неоптимальными потому, что изменилось качество сети или изменилось положение изделия на рабочем столе.

То есть настройка режимов процесс постоянный и индивидуальный потому еще, что он зависит и от манеры работы самого сварщика.

Типичные ошибки

На ошибку в настройках сварочного полуавтомата указывает отчетливый треск. Громкие щелчки сообщают о том, что скорость подачи припоя маленькая. Необходимо увеличить скорость подачи до пропадания треска.

Часто наблюдается сильное разбрызгивание металла. Это связано с недостаточным количеством изолирующего газа в районе сварочной ванны. Нужно увеличить подачу газа, отрегулировать редуктор полуавтомата.

Присутствуют непровары или прожиги шва. Это связано со слишком низким или слишком высоким напряжением дуги, регулируется настройкой вольтажа или индуктивности.

Неравномерная ширина валика шва связаны со скоростью перемещения горелки и ее положением относительно шва, то есть, связана с техникой работы сварщика.

При соблюдении рекомендаций производителя и понимании процессов происходящих в сварочной ванне, способах их регулировки можно выполнять довольно сложные виды сварочных работ в домашних условиях.

Настройка полуавтомата для сварки: как для работы с тонким металлом, таблицы

Насыщенность домашних мастерских сложным электроинструментом профессионального уровня впечатляет. Но не все паспортные возможности оборудования используются. Как настроить полуавтомат сварочный на металл различного сечения, перенастроить на алюминий, нержавейку – сухой информации инструкции недостаточно. Обратимся к знаниям производственников.

Внешнее влияние на настройки

Изменение пространственного положения шва, усиление катета, толщины, конфигурации стыков одного металла потребуют разных настроек. Основные настройки полуавтомата (ПА):

  • Напряжение дуги, регулировка отражается на изменении величины тока.
  •  Ток – подача проволоки, увеличение скорости подачи проволоки отзывается пропорциональным ростом величины тока и наоборот.
  • Расход газа задаётся с опорой на основные параметры, регулируется оценкой качества шва при исключении порообразования.

Первичная настройка параметров сварки проводится по усреднённым табличным значениям.

Далее по результатам тестового прохода режимы электродуговой сварки в среде защитных газов подвергаются корректировке.

Для опытного практика даже звучание зажжённой дуги информативно. Придётся с приобретением полуавтомата привыкать к его особенностям, необходимости подстраивать под изменения:

  • Комплектация и сборка ПА с равноценными характеристиками отличаются начинкой, различие в настройке встречаются у одного производителя.
  • Перепады напряжения сбивают настройки, трансформаторный ПА отключится, а инвертор может сгореть.
  • Изменение состава защитного газа.
  • Смена марки и диаметра проволоки.
  • Повлияет даже незначительный ремонт или замена комплектующих.

Газозащита

Газопоток также относится к расчётным табличным величинам. Напрямую на настройку сварочного полуавтомата не влияет. Контроль упрощается, если редуктор оснащён 2 шкалами. Регистрация величины редуцированного потока воспринимается объективнее с установкой ротаметра.

Расходомер ротаметрический показывает подачу углекислоты (аргона) рабочего давления в постоянных величинах. Показание статического давление снизится, когда сработает курок горелки, создастся защитное облако. Начальный диапазон для ротаметра 6–10 л/мин, для редуктора с манометрами – 1–2 атм.

Экономный расход подбирается по пористости шва: газопоток увеличивается, пока не исчезнут поры

. В помещении с принудительной вытяжкой и на ветру в целях экономии предпочтительно воспользоваться порошковой самозащитной проволокой.

Подбор газовой смеси

Выбор смеси определяют требования качества исполнения и свойства материала:

  • СО2 – идеальное предохранение сварочной ванны конструкционных сталей, глубокий проплав, но разбрызгивание и грубоватость шва для тонких работ не подходят.
  • Смесь аргона и углекислого газа С25 (75% Ar, 25% CO2) – сочетание подходит для сварки тонколистовых конструкций, создаётся равномерный шов с минимумом брызг.
  • Композиция из 98% Ar, 2% CO2 – для нержавеющих сталей.
  • Для алюминия – аргон в чистом виде.

Настройка напряжения

Затраты мощности на горение дуги и плавление металла определяет настройка вольтажа. Энергозатраты возрастают с увеличением глубины провара (толщины материала) и диаметра проволоки.

Настройки бытовых ПА ступенчатые. Огрубление режимами min/max или многорежимные, с мягкой подстройкой как расширенный диапазон регулировки сварочного напряжения полуавтомата Wester MIG-110i на 10 установок.

На внутренней стороне крышки кожуха находится таблица регламента установочных величин напряжения. Это главная подсказка производителя, печатается на модели, разнящиеся по мощности и техоснащению.

Итоговое решение, как настроить полуавтомат сварочный за оператором. Расплывчатые рекомендации не догма, основной критерий – глубина провара и прочность соединения.

Скорость подачи проволоки

Регулятор скорости подачи проволоки управляет силой тока. Величина подачи – одна из основных изменяемых характеристик. Устанавливается после выбора напряжения: скорость плавления определяет движение электрода в горелке.

Эта величина подлежит регулировке после смены марки и диаметра проволоки, изменения напряжения. Существуют ПА с автоматической подстройкой режима, но они в сегменте дорогостоящей аппаратуры.

Желательна тонкая настройка движения расходного материала для оптимизации корректировок. Излишнее ускорение приведёт к наплывам, замедление – к просадке, волнистости, разрывам шва. Баланс тока и напряжения, управляемого скоростью подачи, в сумме дают оптимальный валик.

Первый показатель несоответствия режима выявляется в действии – скорость подачи с зажжённой дугой снижается, но проволока не успевает плавиться, сгибается, липнет к заготовке, идёт активное разбрызгивание.

Недостаточность подачи – электрод инвертора сгорает до касания, забивается наконечник. Подбор режима скорость/ток под выставленное напряжение – первый шаг к профессионализму.

Скорости подачи проволоки в полуавтомате, таблица прямой зависимости влияния изменения настроек на конечный результат:

Полярность

Процедура изменения полярности проста. Под крышкой табличка с указанием, какой металл вид и проволоки требуют прямой или обратной полярности. Прямая – горелка подключается к клемме минус. При прямой полярности плавление проволоки ускоряется на 50%, но стабильность дуги падает.

Сварка порошковой самозащитной проволокой ведётся при прямой полярности. Максимум энергии тепловыделения расходуется на защиту шва. Флюс прореагирует без остатка. Склонность к разбрызгиванию компенсируется безразличием к недоочистке рабочих зон, и порывам ветра. Издержки в виде брызг и корки шлака – неизбежное зло.

Цельная омеднённая в газовом облаке подсоединяется к положительной клемме. Подготовка материала к сварке связана с зачисткой проявлений коррозии, загрязнений стыков, разделки. Токопроводность возрастает с увеличением диаметра. Для заготовок большого сечения есть резон увеличить сечение проволоки.

Невнимание к такой «мелочи» приводит к падению качества: избытку брызг, снижению глубины сварочной ванны (непровару). Управление и контроль качества горения дуги существенно затруднится.

Вылет и выпуск проволоки

Длина вылета расходного электрода из контактной трубки (наконечника), величина рабочего зазора горелки влияют на качество неразъёмного соединения.

Важно! Коробление, непровар, прожиг избыток брызг – причины несоразмерности диаметра проволоки и величины выхода из сопла.

Взаиморасположение наконечника горелки относительно сопла в отдельных конструкциях меняется. Они располагаются на одном уровне, контактная трубка утапливается или выдвигается относительно сопла до 3,2 мм.

На коротком вылете ведётся швообразование конструкционных низколегированных сталей – увеличение расстояния разрежает прикрытие защитным газом. Флюсовую проволоку искусственно удлиняют для увеличения температуры плавления.

Настройка дуги

Уже простые модели ПА имеют верньер управления величинами индуктивности. Настройка жёсткости меняет температуру дуги, глубину проплавления при заметной выпуклости шва. Чувствительность деталей к перегреву, тонкие стенки теперь не препятствуют сварке.

Снижение сжатия токового канала (рост индуктивности) поднимает температуру плавления, проплав глубокий, сварочная ванна разжижается. Валик шва уплощается. Управление глубиной провара, температурой дуги и ванны – качественно новый уровень настройки сварочного полуавтомата.

Малые диаметры присадки делают дугу устойчивее, коэффициент наплавки растёт, глубина проплавления оптимизируется, разбрызгивание снижается. По выпуклости шва и величине разбрызгивания уточняется длина дуги: короткая даёт объёмный шов, длинная мешает концентрации расплава.

Индуктивность maxИндуктивность min
Проплав углубляетсяНизкотемпературная дуга
Разжижение сварочной ванныБрызгообразование усилено
Валик шва ровный, гладкийВалик шва объёмный
Угловые, усиленные швыНастройка полуавтомата для сварки тонкого металла
Управление скоростью подачи проволоки

Переключатель активизации подачи проволоки бывает двухпозиционный (High/Low) или многоступенчатый. Припой большего диаметра выдаётся с замедлением, что оптимизирует процесс.

Перед началом работы

Когда ПА подготовлен к работе согласно инструкции, нелишне потратить время на уточнение режимов настройки. В помощь предлагаем таблицу в качестве ориентира. Составление аналога с индивидуальными свойствами ПА поможет в определении лучших режимов и уточнении возможности техники.

Собственная таблица сварочного тока для полуавтомата имеет тенденцию к разрастанию с новым материалом, условий сварки. Уточнение на бумаге для памяти положения переключателя не повредит.

Выбирается рекомендуемое напряжение. Манипулированием с силой тока и скоростью подачи присадки подбираем оптимум при уменьшении тока и максимуме подачи. Затем при росте ампеража. Вольтаж меняется через 0,5 А. Подробная таблица станет личной инструкцией скоростной настройки.

Ориентировочная таблица: сварочный ток (скорость подачи проволоки), взаимозависимость компонентов процесса:

Влияние величины напряжения на качество шва

Выпуклый шов с достаточным проплавом без пористости, наплывов и подрезов выйдет только при сбалансированности основного компонента – напряжения с сопутствующими.

Низкие настройки дают зауженный высокий шов с малым проникновением вглубь. Высокие – уплощённый с расползанием и глубоким кратером ванны. Завышение напряжения негативно влияет на формирование шва: не удаётся создать валик достаточного объёма при глубине расплава на грани прожига.

На фото сверху:

  • теплотворность напряжения оптимальна,
  • недостаточна,
  • избыточна.

Возможные проблемы и ошибки

Проблемы и промахи при слепом следовании усреднённым рекомендациям – вина сварщика. Об этом упоминалось выше. Подбор режима сварки дело тонкое. Творческий подход и внимание к мелочам –  половина пути к успеху.

Опора на опыт профи поможет:

  • Потрескивание, щелчки – сигнал недостаточной скорости подачи припоя.
  • Присадка плавится на удалении, до наконечника – скорость подачи занижена.
  • Избыток брызг – увеличьте подачу газа и индуктивность.
  • Пористость, оттенки коричневого и зелёного на шве – слабая газозащита.
  • Прожиг, непровар – перебор или недостаток напряжения, скорректируйте индуктивность.
  • Неравномерность шва, неустойчивость дуги, непровар – загрязнение сварочного поля, ослаб зажим массы.
  • Переменчивость полноты валика, зазубрины – скорость ведения горелки и положение относительно шва нарушены.
  • Шов прерывается, неконтролируемое разбрызгивание – превышена длина дуги.
Загрузка…

Как правильно настроить сварочный полуавтомат, признаки неверной настройки

Начинающие пользователи такого оборудования наверняка задаются вопросом: какой сварочный полуавтомат имеет необходимые настройки и не требует дополнительной отладки? Однако таких моделей не существует по двум причинам. Во-первых, сама технология изготовления не дает возможности задать одинаковые параметры для каждого экземпляра. Во-вторых, такое единообразие не имеет смысла, потому что оборудование предназначено для сварки разных материалов.

При этом сохранение заводских параметров существенно сокращает возможности использования прибора, потому что разные металлы и сплавы нужно соединять в разных условиях. Комплект поставки обычно включает инструкции по самостоятельной отладке оборудования, но их зачастую недостаточно. Поэтому каждый опытный мастер знает, как подключить и правильно настроить сварочный полуавтомат для работы с конкретным материалом. Подобный опыт нередко дополняет и уточняет заводские инструкции.

Параметры настроек

Работу сварочных полуавтоматов описывают четыре технические характеристики:

  • напряжение дуги – изменение этого параметра влияет на значение силы тока;
  • сила тока и скорость подачи проволоки – две связанных характеристики с прямо пропорциональной зависимостью друг от друга;
  • расход защитного газа – он увеличивается с повышением значений предыдущих характеристик.

Эти четыре параметра определяют направления, по которым необходимо настроить оборудование для того или иного материала. Важно понимать, что отладка не может сохраняться долгое время в силу следующих наиболее частых причин:

  • незначительный ремонт оборудования, установка новых комплектующих;
  • изменение химического состава газовой смеси, применяемой как защитная среда;
  • перепады и скачки напряжения электрического тока, питающего аппарат;
  • использование присадочной проволоки другой марки и/или с иным составом.

Даже в ряду родственных моделей одного и того же производителя нередко наблюдаются существенные различия в заводских настройках. Подобные расхождения бывают и у разных приборов с идентичными заявленными характеристиками. Чтобы научиться регулировать сварочные полуавтоматы под конкретные задачи, необходимо привыкнуть к особенностям функционирования оборудования и выявить в нем закономерности и причинно-следственные связи.

Рекомендации по настройке 

Четыре рабочих характеристики оборудования намечают пять направлений его регулировки: защитная газовая смесь, напряжение, полярность, скорость подачи и вылет проволоки. Рассмотрим каждый аспект более подробно.

Подбор газовой смеси

Для защиты соединяемых деталей и оборудования от высоких температур и искр в зону сварки нагнетают газовую смесь или какой-то чистый газ. Для сварочных полуавтоматов используют два вещества: углекислый газ (диоксид углерода) и инертный материал аргон. Возможно четыре варианта их комбинации для разных сплавов и качества шва:

  • Чистый углекислый газ – подходит для толстых листов или крупных изделий из сплавов на основе железа (чугун, сталь), обеспечивает глубокий проплав, но дает большое количество искр, а шов получается в итоге грубым и некрасивым.
  • Первая смесь обоих газов – на три четверти (75 %) состоит из аргона и на одну четверть (25 %) из углекислоты. Состав подходит для работы с тонкими листами и с небольшими деталями. Дает минимум брызг, а спайка получается аккуратной.
  • Вторая смесь обоих газов – на 98 % состоит из аргона и на 2 % из углекислого газа. Основное назначение такой среды – сваривание деталей из нержавеющей или оцинкованной стали, медных сплавов. Минимум брызг, высокое качество шва.

Чистый аргон – применяется для соединения деталей из алюминия, меди, сплавов на их основе, а также вообще для работы с цветными металлами. Обеспечивает почти полное отсутствие искр, а шов выходит тонким, ровным, чистым и красивым.

Чем больше в составе защитной среды аргона, тем аккуратнее, чище и тоньше получается соединение. Углекислый газ дает довольно грубое соединение и не подходит для тонких металлических листов, мелких деталей и цветных металлов. Однако он более доступен, что определяет его распространение в сварке крупных предметов и в грубых работах.

Настройка напряжения

Настраивать этот параметр необходимо с учетом требуемой глубины провара, а также толщины соединяемых листов или размеров деталей. Чем больше энергии потребуется на плавление припоя и обрабатываемого сплава, на горение сварочной дуги, тем выше должен быть установленный вольтаж аппарата, который преобразует энергию электрического тока в тепловую.

Регулировка вольтажа носит ступенчатый характер. Большинство современных аппаратов позволяют установить необходимый для работы вольтаж в два этапа.

  • Сначала с помощью переключателя на задней стороне полуавтомата выбирается один из двух режимов работы прибора. Режимы отмечены цифрами «1» и «2».
  • Далее в рамках каждого из этих режимов можно выбрать между минимальным и максимальным уровнем напряжения. За это отвечает второй переключатель.

В результате получается четыре варианта вольтажа. Для облегчения выбора нужного значения на некоторых моделях помещают также таблицу для определения вольтажа и скорости подачи проволоки. Такие справочники индивидуальны для каждого аппарата. Слишком низкий вольтаж не обеспечит нужной глубины провара, и шов получится непрочным. При чрезвычайно высоком вольтаже возрастает риск прожига материала.

Настройка скорости подачи проволоки

Регулировать этот параметр следует после выбора напряжения электрического тока. Эта очередность связана с тем, что скорость подачи определяет скорость плавления, которая одновременно зависит от вольтажа. Когда присадочная нить начинает плавиться, скорость ее продвижения снижается. Если этот параметр окажется ниже или выше соответствующего ему вольтажа, качество соединения сильно снизится:

  • Если присадочная нить будет подаваться слишком быстро, то при контакте с металлом она начет деформироваться прежде, чем успеет расплавиться. Она также будет липнуть к обрабатываемой поверхности, обильно искря и брызгая. Соединение при этом получится неаккуратным, с большим количеством наплывов и низкой прочностью.
  • При слишком медленной подаче проволока рискует сгореть, так и не успев расплавиться. При этом забивается наконечник горелки. Если же присадочная нить все-таки начала плавиться, это не гарантирует качественной работы. При контакте с металлом нить будет давать рваный шов с просадками и волнистостью.

Настраивать скорость подачи присадочного материала приходится чаще, чем другие характеристики оборудования. После каждой смены напряжения и замены на другую присадочную нить прежние настройки сбиваются, и их нужно регулировать заново. Современные модели часто облегчают этот аспект благодаря опции автоматической настройки.

Количественное выражение взаимосвязи настроек и результата отражено в таблице:

Регулировка полярности

Этот параметр сварочных полуавтоматов настроить проще всего. На корпусе обычно помещают таблицу, в которой указано, для какого металла или сплава более предпочтительна прямая, а для какого – обратная полярность. В первом случае газовую горелку следует подключать к минусовой клемме, во втором – к плюсовому разъему.

Выбор зависит от конструктивных типов присадочной проволоки. На сегодня их два:

  • Простая. Это омедненная цельная нить, при работе с которой всегда используют защитный газ. Она не имеет никаких дополнительных добавок, поэтому перед началом работы поверхность необходимо особенно тщательно очистить. Такую присадочную нить можно применять только в помещении, но она почти не дает искр и брызг, а шов получается тонким, ровным, аккуратным и чистым, без шлаков.
  • С флюсом. Это добавка в центре проволоки, при ее плавлении образующая защитный газ, поэтому внешняя среда из аргона или углекислоты не требуется, как и тщательная очистка поверхности – незначительные загрязнение не помешают. С таким припоем можно работать даже на улице в ветреную погоду, но брызг и искр будет очень много. По шву образуется много шлака, который нужно счищать.

Простая медная нить – это всегда обратная полярность и подключение к плюсовой клемме. Отрицательный заряд при этом подается на свариваемый материал. Присадочная нить с флюсом требует прямой полярности и соединения через минусовой разъем. При этом свариваемую деталь соединяют с клеммой с положительным зарядом. Разница зарядов и создает электрическое напряжение и электромагнитное поле.

Настройка вылета проволоки

Вылетом называют расстояние между концом наконечника и концом самой проволоки, то есть часть ее длины, на которую она выдвинута из наконечника. Если отрегулировать этот параметр правильно, получится избежать обильных брызг, коробления свариваемого материала, его прожига и недостаточного провара. Выпуском считается расстояние от сопла горелки до проволочного торца. При малых диаметрах выпуск и вылет равны друг друга, при увеличении толщины нити выпуск уменьшается на 1-10 мм.

На практике применяют три основных варианта вылета в зависимости от конструкции газового сопла и применяемой защитной среды:

  • В общем случае выпуск должен быть как можно меньше – порядка 0,6-1,0 см. Такое значение подходит для защитной среды из чистого углекислого газа или из его смесей с аргоном. Чем больше аргона, тем вылет может быть больше.
  • При использовании в качестве защитной среды чистого аргона вылет присадочной нити может превышать 1 см. Существуют модели с автоматической регулировкой этого параметра, при которой шаг выпуска составляет порядка 3 мм.
  • Если наконечник газового сопла углублен внутрь его корпуса, то слишком короткий вылет не обеспечит нормального плавления. Поэтому чем сильнее наконечник утоплен в корпусе горелки, тем больше должно быть значение выпуска.

Чем толще проволока, тем меньше должен быть вылет, иначе в зоне сварки ее окажется больше, чем сварочный полуавтомат способен обработать. И если короткий выпуск просто не позволяет сформировать наплав и сварной шов или не обеспечит нужной глубины провара и прочности шва, то слишком длинный создает избыток припоя, что приведет к прожиганию и короблению металла, обильным брызгам и искрению.

Взаимосвязь вылета, выпуска, диаметра и расхода газа отражены в таблице:

Самые частые сбои и их признаки

Если сварочный полуавтомат не был правильно настроен и отрегулирован, в процессе его работы могут возникать различные сбои и ошибки. Ниже перечислены наиболее распространенные из них, а также признаки, по которым их можно распознать:

  • Если проволока подается слишком быстро для выбранного напряжения, она не образует дугу, а просто приварится к одной из соединяемых деталей.
  • При нехватке или отсутствии защитного газа в зоне сварки обильно вылетают брызги, а шов становится пористым и приобретает зелено-коричневую окраску.
  • Если напряжение и/или скорость подачи присадочной нити недостаточны, сварка не проникнет глубоко в толщу соединяемых деталей, и шов будет непрочным.
  • При слишком высоком для данной толщины металла вольтаже закономерно произойдет прожигание свариваемых листов или деталей.
  • Если присадочную нить подавать слишком медленно, при касании металла она будет частично оплавляться, оставаясь на конце рабочего наконечника.
  • При удалении горелки от места сварки далее 0,6-1,2 см шов получится прерывистым, а в процессе работы будет обильное разбрызгивание припоя.
  • Если материал не очищен, а заземление плохо закреплено, сварка будет идти рывками, а шов получится рваным. Со стороны кажется, что причина в низком напряжении или малой скорости подачи проволоки, но это не так.

Кроме того, треск и щелчки во время сварки говорят о низкой скорости подачи припоя. Недостаток газовой среды увеличивает количество брызг и искр. Прерывистый шов и непроваренные (пропущенные) участки указывают на то, что поверхность металла не была очищена и должным образом подготовлена к сварке. Зазубрины и разная толщина шовного наплава – результат неравномерного ведения горелки по месту соединения.

Вообще, в процессе сварки недостаточно иметь в виду только усредненные инструкции и рекомендации. Обязательно нужно обращать внимание на мелочи и подмечать опытным путем, какой результат получается при тех или иных настройках и движениях горелки.

Рекомендательные значения основных параметров представлены в таблице:

Приобретение сварочных полуавтоматов

Перечисленные выше рекомендации по настройке в равной степени справедливы для сварочных полуавтоматов любой торговой марки, модели и модификации. То же касается и наиболее распространенных сбоев в работе оборудования и признаков, которые позволяют их выявить. Конечно, отрегулировать аппарат под свои нужды проще, если заводские настройки более соответствуют требуемым для работы параметрам.

В каталоге компании «Строительные ресурсы» представлен широкий выбор сварочных полуавтоматов для соединения всех основных рабочих сплавов: железных, алюминиевых, медных. Это удобные инверторные моноблоки отечественной марки «Сварог», которая не уступает по техническим характеристикам аналогичному оборудованию зарубежных брендов «Аврора» (китайское производство) или «Ресанта» (латвийская компания).

Режимы и методы сварки, использование полуавтоматов

Значительная часть сварочных работ сегодня осуществляются с применением дуговой сварки плавящимся электродом в среде защитного газа (полуавтоматическая сварка, MIG-MAG сварка). которая характеризуется множеством неоспоримых выгод и преимуществ.Обратной стороной этой медали является зависимость результатов сварки от правильности настройки режимов сварки — напряжения, тока, скорости подачи сварочной проволоки, величины расхода защитного газа в горелке и пр. Ко всему этому еще надо учитывать влияние выбора типа и диаметра сварочной проволоки и типа применяемого защитного газа, пространственного положения сварного шва и пр.

Рассмотрим этот вопрос более подробно, отталкиваясь от ситуации замены защитного газа от традиционной углекислоты на аргоновую сварочную смесь с применением полуавтомата.

Особенности использования полуавтомата для MIG-MAG сварки

ВЫБОР ГОРЕЛКИ И НАКОНЕЧНИКОВ

Силовой агрегат сварочного полуавтомата формирует постоянный сварочный ток. величина которого регулируется и устанавливается в зависимости от параметров сварки, толщины (диаметра) сварочной проволоки и скорости подачи сварочной проволоки в горелку. Электрический контакт от силового агрегата со сварочной проволокой осуществляется непосредственно в сварочной горелке. Под воздействием протекающего тока горелка нагревается и контактный наконечник в ней заметно расширяется. Аргоновые сварочные смеси обладают меньшей теплопроводностью по сравнению с углекислотой и отвод тепла от горелки при работе со сварочными смесями происходит хуже. Это приводит к заметному перегреву сварочной горелки и на форсированных режимах может даже вызвать ее разрушение (расплавление изоляционных элементов). По этой же причине сварочная проволока в горелке перегревается при работе с аргоновыми смесями и от расширения может застревать в сварочном наконечнике. Это может привести к неравномерности подачи сварочной проволоки в зону сварки и даже заклиниванию проволоки в горелке. Поэтому при переходе на сварочную смесь рекомендуется использовать сварочные горелки большей мощности и применять наконечники чуть большего диаметра.

НАСТРОЙКА ПОДАЮЩЕГО МЕХАНИЗМА

Для обеспечения стабильного режима сварки необходимо стабилизировать не только электрические режимы *ток и напряжение дуги), но и скорость механической подачи сварочной проволоки в горелку. Как отмечалось выше при некорректном выборе электрического наконечника возможно заклинивание сварочной проволоки в горелке. Особенность конструкции большинства сварочных полуавтоматов в том, что подача сварочной проволоки в горелку производится через подающий канал (шланг) путем проталкивания проволоки вперед через подающие ролики, установленные на сварочном аппарате. Важным параметром настройки сварочного аппарата является регулировка натяжения подачи проволоки. При слабом натяжении подающих роликов затруднение прохождения сварочной проволоки в горелке будет приводить к проскальзыванию проволоки между роликами и дестабилизации скорости ее подачи в зону сварки (продергивание и снижение скорости подачи вплоть до полной остановки). При слишком сильном натяжении подающих роликов затруднение прохождения сварочной проволоки в горелке может вызвать сминание сварочной проволоки в подающем канале с последующей остановкой подачи сварочной проволоки в зону сварки. Одновременно слишком сильно натянутые подающие ролики вызывают расплющивание проволоки и усугубляют проблему ее прохождения через наконечник в горелке. Для профилактики этой проблемы рекомендуется использовать наконечники с отверстием некруглой формы (квадрат, треугольник, звездочка и пр.)

Параметры режимов сварки

НАСТРОЙКА НАПРЯЖЕНИЯ ДУГИ

Напряжение дуги является основным параметром, определяющим энергию разогрева сварочной ванны, от которого зависит как глубина проплавления, так геометрия сварного шва. Для выбора конкретных значений напряжения дуги в зависимости от типа свариваемых можно воспользоваться как доступными справочниками, так и служебными документами (РТМ).

Настройки напряжения дуги тесно связаны с настройками варочного тока и скорости подачи сварочной проволоки. Отталкиваясь от вольт-амперной характеристики сварочных аппаратов в целом можно отметить, что зона устойчивого горения дуги для аргоновых смесей располагается ниже и правее зоны, установленных для чистой углекислоты.

Если принять за основу известные настройки для углекислоты, то при переходе на сварку в аргоновых смесях режимы напряжения дуги необходимо изменять в следующих направлениях:

  • Для сварки тонких заготовок из черных металлов (менее 1,5 мм) или оцинкованных металлов напряжение дуги необходимо уменьшать при сохранении скорости подачи проволоки и сварочного тока.
  • для сварки заготовок в режиме мелкокапельного переноса (обычно для заготовок толщиной до 6-8 мм) можно не изменять напряжение дуги, но необходимо увеличивать сварочный ток и скорость подачи сварочной проволоки. Степень их увеличения зависит от состава сварочной смеси. Чем больше % содержание аргона или кислорода в смеси, тем больше должно быть увеличение тока и скорости подачи проволоки. Оптимальный баланс настроек напряжения и скорости подачи сварочной проволоки должен обеспечить необходимое проплавление сварного шва (сплавление кромок) при минимальном разбрызгивании;
  • для сварки заготовок большой толщины в режиме капельного переноса (обычно для толщин до 12-15 мм) рекомендуется немного снизить напряжение дуги (до 10-15%), и заново подобрать (увеличить) сварочный ток и скорость подачи сварочной проволоки. Степень их увеличения зависит от состава сварочной смеси и пространственного положения заготовок. Чем больше % содержание аргона или кислорода в смеси, тем больше должно быть увеличение тока и скорости подачи проволоки.
  • Для вертикальных швов при сварке тонких заготовок (до 3-5 мм) с применением аргоновых смесей рекомендуется сохранить рабочие настройки напряжения дуги как для углекислотного режима и увеличить сварочный ток и скорость подачи проволоки примерно на 15-30% в зависимости от состава смеси и толщины свариваемых заготовок. Сварка при этом производится из положения сверху вниз. При правильно подобранном балансе настроек шов получается ровным и практически без брызг. При сварке заготовок большой толщины (от 5-6 мм и более) в сравнении с типовыми углекислотными режимами сварочный ток и скорость подачи проволоки можно не изменять, но обеспечить необходимый баланс настроек путем регулировок только напряжения дуги
  • для сварки высоколегированных (нержавеющих, жаропрочных) сталей допускается небольшое увеличение напряжения дуги (на 5-10%) с последующим подбором баланса настроек путем регулировок скорости подачи сварочной проволоки;
  • для сварки заготовок большой толщины в режиме струйного переноса (обычно для толщин от 10-15 мм и выше) рекомендуется увеличить напряжение дуги до 29-31В, и заново подобрать (увеличить) сварочный ток и скорость подачи сварочной проволоки. Степень их увеличения зависит от состава сварочной смеси. Чем больше % содержание аргона в смеси, тем больше должно быть увеличение тока и скорости подачи проволоки. Для вертикальных швов работа в режиме струйного переноса практически невозможна.
Выбор оптимального режима для сварки полуавтоматом при использовании сварочных смесей в немалой степени зависит также от фактического состава сварочной смеси, пространственного положения заготовок, приемов сварки (ходом вперед или назад), обработки кромок, наличия загрязнений и ржавчины и пр. Компания ИТЦ Промэксервис помогает своим клиентам получить практические рекомендации по выбору правильной сварочной смеси оптимальной настройке режимов сварки.

НАСТРОЙКА СКОРОСТИ ПОДАЧИ СВАРОЧНОЙ ПРОВОЛОКИ

Как отмечалось выше при переходе от углекислоты к аргоновым смесям для полуавтоматической сварки в большинстве случаев рекомендуется производить увеличение скорости подачи сварочной проволоки. В свою очередь скорость подачи проволоки в большинстве случаев синхронизирована с регулировкой сварочного тока, а он в свою очередь зависит от диаметра сварочной проволоки. В некоторых случаях для установки оптимальных режимов сварки, особенно для режима струйного переноса, требуется значительное увеличение скорости подачи, которые иногда может физически ограничиваться пределами регулировки подающего механизма сварочного аппарата. Поэтому при переходе на сварку в среде аргоновых смесей в некоторых случаях необходима замена подающих роликов на больший диаметр. Для таких ситуаций оптимальные настройки скорости подачи проволоки следует подбирать по внешним признакам, по результатам пробной сварки:

  • По звуку горящей дуги — в оптимальном режиме частота звука должна быть максимальной (похожа на зудение комара).
  • По внешнему виду сварного шва — в оптимальном режиме шов должен быть максимально гладким (мягким), без резких изломов по краям
  • По разбрызгиванию — в оптимальном режиме размер брызг сварочной проволоки и их количество должны быть минимальными

Настройка расхода газа в сварочной горелке.

Для обеспечения качественной сварки и отсутствия пор даже для качественной сварочной смеси правильная настройка потока газа в сварочной горелке имеет огромное значение. Для обеспечения качественной сварки с применением аргоновых смесей следует выполнять следующие рекомендации :

  1. Для контроля расхода газа необходимо использовать только расходомер (ротаметр), контролирующий поток газа ( обычно в л/мин.). Расходомер обычно устанавливают на редукторе. Следует обращать внимание, что фактический расход газа непосредственно в горелке всегда отличается от величины расхода, установленного на редукторе. Особенно это заметно при нарушении целостности шлангов (трещины или проколы) или неплотного крепления шлангов на газовых штуцерах. Поэтому рекомендуется иметь ручной расходомер газа, который позволяет оперативно проверить величину расхода непосредственно на сварочной горелке.
  2. Величина расхода на сварочной горелке должна примерно соответствовать диаметру сварочной горелки (в мм). Обычно нормальный расход для аргоновых смесей составляет 12-15 л/мин. Для сварки на форсированных режимах расход газа следует увеличить до 20-25 л/мин. Следует помнить также, что для сварки в аргоновых смесях горелку следует держать близко к вертикальному положению и расстояние до сварного шва должно быть не более 15-20 мм. ;
  3. При расходе газа в горелке более 30 л/мин и при большом угле наклона сварочной горелки возможен подсос воздуха в зону сварки и образование пор в сварном шве. ОБРАЩАЕМ ВНИМАНИЕ, что при работе с углекислотой появление пор обычно стараются устранить путем увеличения расхода газа, и при переходе на работу со сварочной смесью при избыточной величине расхода газа такая «привычка» может сыграть злую шутку и только увеличить негативный эффект. ;
  4. Помимо величины расхода газа важно также проверять состояние и расположение газовой насадки (сопло) на сварочной горелке. Насадка должна быть расположена строго соосно с сварочным наконечником, определяющим направление движения сварочной проволоки. При несоосности газовый поток направляется в сторону от сварочной ванны и не может обеспечить надежную защиту зоны сварки.;
  5. В некоторых случаях при большом разбрызгивании сварочной проволоки часть брызг попадает в сопло сварочной горелки и застревает там в виде хаотичного сита, что может приводить также к рассеиванию ламинарного (однородного) потока газа из горелки, уводя поток защитного газа в сторону от сварочной ванны, что опять может вызвать образование пор при сварке ;
  6. Процесс работы со сварочным полуавтоматом не имеет особой сложности и позволяет получить сварочные швы высокого уровня на заготовках различной толщины и типоразмера. Важно лишь правильно провести подготовительные мероприятия и определиться с оптимальным режимом сваривания. Остальное зависит от уровня подготовки сварщика, его квалификации и степени сложности проводимых им действий.

Настройка полуавтомата для сварки своими руками

На чтение 6 мин. Опубликовано 13.04.2020

Сварочный полуавтомат удобен для использования в небольших мастерских или в домашних условиях. Он отличается компактными размерами и не требует подготовки специального рабочего места. С аппаратом справляются как опытный сварщик, так и не имеющий квалификации новичок. Для получения правильно функционирующего прибора нужна настройка полуавтомата для сварки, которая зависит от вида металла, толщины и скорости проволоки, состава газа в баллоне и других факторов. Устройство способно выполнять работу с разными сплавами.

Техника безопасности при работе с полуавтоматом

Перед соединением заготовок необходимо заземлить аппарат, после чего начать настройку с подключения газового баллона, проверить катушку с проволокой. Последняя иногда перезаряжается и припой протягивается к рукоятке горелки.

При использовании полуавтомата необходимо соблюдать требования техники безопасности.

Главные ее положения:

  1. Не допускать прямого попадания лучей солнца на газовый баллон, не заправлять его самостоятельно, беречь вентили от повреждения, не заносить резервуар с холода в теплое помещение.
  2. Все действия производить в огнестойком костюме, защитной маске, специальной обуви и перчатках.
  3. Убрать подальше взрывоопасные и горючие вещества.
  4. Использовать полное освещение.
  5. Не сваривать бензобаки, канистры и бочки, в которых хранились опасные составы.

При соблюдении перечисленных правил результаты будут хорошими у всех сварщиков.

Что влияет на настройку аппарата

Изменение положения швов в пространстве и конфигурации стыков зависит от:

  • напряжения дуги и полярности тока;
  • скорости подачи проволоки, ее диаметра и марки;
  • толщины металла;
  • вида газа в баллоне и его расхода;
  • состояния отдельных частей прибора.

К комплектующим относятся:

  • блок управления;
  • встроенный источник питания;
  • подающий механизм для припоя;
  • горелка;
  • силовой кабель;
  • баллон с аргоном или углеродом.

Устройство подачи проволоки включает в себя тянущие ролики, редуктор и электродвигатель. По результатам проверки режима сварки с использованием ПА настройки корректируются.

Толщина металла

Немного о том, как правильно настроить сварочный полуавтомат в зависимости от параметров заготовок.

Тонкие листы соединяют внахлест, при этом в верхнем высверливают отверстия, через которые поступает припой.

При регулировке следует установить значения рабочего тока и напряжения, а также изменить скорость подачи проволоки на меньшую. Если дуга будет неустойчивой, нужно немного увеличить выбранные показатели.

Во избежание прожога металла электрод ведут без остановки. Варить лучше с середины материала, чтобы не залить расплавом остальные отверстия. Если шов не требует герметичности, заготовки соединяют отдельными точками, расположив их на дистанции 1-5 см.

Детали толщиной от 4 мм подвергаются снятию фасок. Это дает возможность формировать ровный и качественный шов. Работы рекомендуется проводить на улице.

Ниже приведена таблица главных параметров.

Толщина заготовки (мм)Ток (А)Напряжение (В)
1,07017
1,595-11018-19
2,0110-15019-21
2,5130-15021,5
1,0100-11018-19
2,0125-18019-22
3,0150-18020-22,5
4,0180-27018-22
2,0140-18020-22,5
3,0170-25021,5-24
4,0200-30022-28

Все значения относятся к начальным показателям. В процессе работы они корректируются.

Наличие газовой среды и ее состав

При сварке используют газы нескольких видов, чаще гелий, углекислый или аргон. Их применяют для увеличения прочности шва.

Выбор смеси зависит от требуемого качества работы и характеристик металла:

  1. СО² хорошо предохраняет конструкционные металлы (полностью закрывает сварочную ванну, обеспечивает глубокий проплав), однако создает брызги, отчего шов получается грубым. Мастера не рекомендуют применять эту смесь для производства тонких работ.
  2. Аргон с добавлением углекислого газа (Ar – 75%, СО² – 25%). Состав с таким сочетанием годится для соединения конструкций из тонких листов металла. Шов получается ровным, разбрызгивание минимальное.
  3. Ar – 98% + СО² – 2%. Смесь используется при сварке нержавеющей стали.
  4. Чистый аргон применяется для работы с алюминием и его сплавами.

Режим сварки полуавтоматом с защитным газом требует правильной подготовки аппарата. Настраивать его нужно, ориентируясь на толщину и тип заготовок, регулируя расход защитной смеси.

Полярность и необходимое напряжение

Полярность существует 2 видов: прямая и обратная. Первый устанавливается перед соединением толстых заготовок. Электрод нужно подключить к минусу сварочного оборудования, детали – к плюсу. Металл будет расплавляться глубже, что позволит работать с алюминием, чугуном и другими сложными составами, а также использовать порошковую проволоку.

При подключении обратной полярности плюс идет к горелке, минус – к заготовке, которая остается в относительно холодном состоянии, электрод тем временем разогревается. Метод годится для соединения тонкого металла.

На образование и поддержание дуги оказывает влияние рабочее напряжение. Оно растет с увеличением диаметра сварочной проволоки и толщины металла. При низких настройках шов образуется узкий и непрочный, при высоких – уплощенный, с потеками и прожогами. Правильные регулировки можно определить опытным путем. Валик должен иметь выпуклую форму при устойчивой дуге без образования брызг. На некоторых полуавтоматах есть отдельная функция – индуктивность. Она используется при настройке формы шва.

Положение электрода и подача проволоки

На качество сварки влияют много факторов, в том числе положение горелки. Ее рекомендуется вести ровно, не слишком приближая к заготовке. Между кромками деталей остается интервал: при толщине металла 1 см и менее – до 1 мм, при больших размерах заготовки – 10% от их величины.

Проволока поступает по шлангу с катушки с помощью валиков или шестерен, при замене которых скорость ее подачи увеличивается или уменьшается. В некоторых аппаратах для настроек имеется специальная коробка передач. При быстром перемещении проволоки электрод не всегда успевает расплавиться, при медленном – припой сгорает без образования шва.

Начальные настройки

Сначала устанавливается сила тока, которая зависит от толщины и вида материала. Следующий этап – регулировка скорости движения проволоки. Это делается плавно или ступенчато. Первый способ намного удобнее. Далее выбирается нужное напряжение.

Если настройки выполнены с ошибками, полуавтомат будет издавать треск. Щелчки громкие: скорость движения припоя малая. Ее увеличивают до наступления относительной тишины. Расплавленный металл сильно разбрызгивается: в месте сварки мало защитного газа. Его подачу увеличивают, регулируя редуктор.

Общая детальная таблица настроек автомата

На качество сварочных работ влияют многие факторы.

Для регулировки аппарата существуют различные таблицы, например:

Толщина металла (мм)Диаметр электродаТок (А)Напряжение (В)Скорость проволоки (м/час)Расход газа (л/мин)
1,00,87017110-1206-7
1,50,895-11018-19110-1206-7
2,00,8110-15019,0-21,0130-1506-7
2,50,8130-15021,5130-1507-8
1,01,0100-11018,0-19,0110-1206-7
2,01,0125-18019,0-22,0130-1506-8
3,01,0150-18020,0-22,0150-1606-8
4,01,0180-27018,0-22,0200-3007-9
2,01,2140-18020,0-22,5150-1607-9
3,01,2170-25021,5-24,0200-2207-9
4,01,2200-30022,0-28,03007-9

Даже после полного изучения рекомендаций мастеров и производителей настроить аппарат правильно не всегда удается. Регулировка режимов должна осуществляться постоянно.

Режимы сварки в защитных газах

Темы: Режимы сварки, Сварка стали, Сварка MIG / MAG, Сварка в защитных газах, Сварка в углекислом газе, Проволока сварочная, Сварные соединения.

Режимы сварки в защитных газах имеют такие основные параметры :

  • род, сила и полярность тока;
  • напряжение сварки,
  • диаметр проволоки;
  • скорость подачи электродной проволоки;
  • вылет, наклон и колебания электрода;
  • скорость сварки;
  • расход газа;
  • состав газа.

Таблица 1. Режимы сварки в в защитных газах (СO2,СO2+O2 и Ar+25%СO2 ) стыковых соединений низкоуглеродистых и низколегированных сталей в нижнем положении проволокой Св-08Г2СА (ток обратной полярности)

Толщина металла, мм Зазор, мм Число проходов Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,5-1 0-1 1 0,5-0,9 30-80 16-18 25-50 8-10 6-7
1,5-2 0-1 1 1,0-1,2 80-150 18-23 25-45 10-13 7-9
3 0-1,5 1 1,2-1,4 150-200 23-25 25-40 12-15 8-11
3-4 0-1,5 2 1,2-1,6 180-250 25-32 25-75 12-30 8-15
6 0,5-2 2 1,2-2,0 200-420 25-36 25-60 12-30 10-16
9-10 0,5-2 2 1,2-2,5 300-450 28-38 20-50 12-35 12-16
12-20 1-3 2 1,2-2,5 380-550 33-42 15-30 12-25 12-16

 

Таблица 2. Режимы сварки в в защитных газах ( СO2,смеси Ar+25%СO2 и Ar+O2+25%СO2) поворотрых кольцевых стыковых швов проволокой Св-08Г2СА (ток обратной полярности)

Диаметр детали, мм Толщина стенки, мм Зазор, мм Смещение кромок, мм
Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
50* 1-1,5 0-1 0-1 0,8-1,2 100-150 18-19 80-90 10-12 7-8
100-150** 2-2,5 0-1.5 0-1 0,8-1,2 130-180 18-19 70-80 10-13 7-8
200-500** 8-15 0-1 0-1 1-1,2 150-190 19-21 20-30 10-15 7-8
200-400** 30-60 0-1 0-1 2-3 350-450 32-36 25-35 25-60 15-18

* Смещение электрода согласно Рис .1.

** Сварка корневого шва при V- или U-образной разделке

Рис. 1. Схемы расположения электрода при сварке в СO2 поворотных кольцевых швов тонкой стали 1 на весу.


Таблица 3. Режимы сварки в в защитных газах ( СO2 и Ar+25%СO2 ) нахлесточных соединений проволокой Св-08Г2С (ток обратной полярности)
Толщина металла, мм Положение сварки Защитный газ Зазор, мм Диаметр проволоки, мм Сила сварочного тока, А Напряжение сварки, В Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин Примечание
0,8+0,8 В СO2 0-0,5 0,8-1 100-120 17,5-19 40-80 8 6-7 На медной прокладке
1+1 Н 0,8-1,2 110-135 18-20 30-50 8-12 7-8
1+1 В 0,8-1,2 120-150 18-20 40-80 8-12 7-8 На весу или на медной прокладке
1,2+1,2 Н СO2 ,Ar+ 25%СO2 0-0,5 0,8-1,2 120-145 18-20 30-50 8-12 6-8 На медной прокладке
В 130-160 40-80 7-8 На весу или на медной прокладке
2+2 Н и В 0-0,5 1-1,4 160-220 19-22 30-70 10-14 8-9 На весу
5+5 Н 0-1 1,2-2 200-500 21-35 30-45 10-20 9-15
1,5+5 Н и В 0-1 1-1,4 130-180 19-22 30-65 8-14 7-9

* Н — нижнее, В — вертикальное положение сварки.

 

Таблица 4. Режимы сварки в в защитных газах ( СO2 и Ar+25%СO2 ) углеродистых сталей в вертикальном положении проволокой Св-08Г2С (сварка сверху вниз, обратная полярность).

Толщина металла, мм Соединение Зазор, мм Номер прохода Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,8-1 0-1 1 0,8-1,2 90-130 17-18 40-60 8-11 6-7
1,2-2 0-1 0,8-1,2 140-200 18-22 40-55 8-12 6-7
2,2-4 0-1,5 1,2-1,5 180-260 21-24 35-55 9-12 7-8
3-6 1±1 1 1,2-1,4 160-200 20-23 25-45 9-12 8-9
2 1,2-1,4 200-260 23-25 20-40 9-12 8-9
8-10 2±1/2 1 1,2-1,4 160-200 20-23 25-45 9-12 9-10
2-3 1,2-1,4 200-260 23-35 20-35 9-12 9-10
0,8-1 0-0,05 1 0,8-1 90-130 17-18 40-55 8-11 5-7
1,5-3 1 0,8-1,2 140-200 18-22 40-50 8-12 6-7
3,2-5,5 0-1 1-2 1,2-1,4 160-240 20-23 35-55 9-12 7-8
6-12 0-1,5 1-2 1,2-1,4 200-260 22-26 25-35 10-12 8-10

 

Таблица 5.

Режимы сварки в защитных газах ( СO

2)

горизонтальных швов проволокой Св-08Г2С (обратная полярность).

Толщина металла, мм Соединение Зазор, мм Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,8-1 0-0,5 0,8-1 70-130 17-18,5 25-30 8-10 6-7
1,5 1-1,5 0,8-1,2 100-150 17,5-19,5 19-24 8-12 6-8
3 1,5-2 1-1,4 140-190 20-23 16-18 10-12 7-9
5-6 0-1 1-1,4 150-250 20-23 10-14 12-14 8-10

 

Таблица 6.

Режимы сварки в защитных газах ( СO

2)

швов в потолочном положении проволокой Св-08Г2С (обратная полярность).

 

Толщина металла, мм Катет шва Соединение Зазор, мм Диаметр проволоки, мм Число проходов Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Расход газа, л/мин
1,5-2 1,5-2 0-1 0,8-1,2 1 150-190 18,5-20 23-35 7
3-5 3-5 0-1,5 1-1,2 1 160-260 18-22,5 20-30 8
7-8 6-8 2 160-270 19,5-22,5 17-25 8-9

 

Таблица 7.

Режимы сварки (ориентировочные) углеродистых сталей в углекислом газе

электрозаклепками и точками.

Толщина листов, мм Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Длительность сварки, с
Вылет электрода, мм
Расход газа, л/мин Наличие отверстия в верхнем листе
верхнего
нижнего
0,5 0,5-2,0 0,8 100-140 18-21 0,6-1,1 6-10 5-6 нет
0,8 0,8-3,0 0,8 120-160 19-22 0,5-1,2 8-10 5-6 нет
1,0 1,0-4,0 0,8-1,0 150-190 20-23 1,0-1,8 8-12 5-7 нет
1,5 1,5-4,0 1,0-1,2 200-210 21-24 1,4-1,8 10-12 6-7 нет
1,5 1,5-4,0 1,0-1,2 190-210 21-23 1,3-1,6 10-12 6-7 есть
2,0 2,0-5,0 1,0-1,4 220-300 22-27 2,0-3,0 10-14 6-8 нет
2,0 2,0-5,0 1,0-1,4 210-250 22-25 1,6-2,0 10-14 6-7 есть
3,0 3,0-6,0 1,2-1,6 320-380 30-35 2,0-3,0 12-14 7-8 нет
3,0 3,0-6,0 1,2-1,6 300-350 28-32 1,9-2,5 12-14 7-8 есть
4,0 4,0-6,0 1,4-1,6 380-420 33-37 3,0-3,5 13-15 8-9 нет
4,0 4,0-6,0 1,4-1,6 350-380 32-35 2,2-3,0 13-15 8-9 есть
5,0 5,0-7,0 1,4-2,0 400-450 34-40 3,5-4,0 14-16 9-10 нет
6,0 6,0-8,0 1,6-2,4 420-550 38-44 3,0-4,0 14-18 9-10 нет
8,0 8,0-10,0 2,0-2,4 550-600 43-48 3,0-4,0 16-18 11-12 нет

Примечание к Табл.7: постоянный ток обратной полярности; режимы сварки точками принимают текими же, как при сварке без отверстия для толщины верхнего листа.

Другие материалы относящиеся к темам »

Режимы сварки в защитных газах

:

  • < Сварка MIG / MAG
  • Сварка в среде углекислого газа >

Полуавтоматическая сварка (MIG)

 

Принципиальная схема и особенности полуавтоматической сварки
 

 


 

Полуавтоматическая сварка отличается от ручной ду­говой сварки тем, что механизируется подача электродной проволоки в сварочную зону, а остальные операции процесса сварки выполняются сварщиком вручную. Для этого современная промышленность выпускает целую се­рию сварочных полуавтоматов, при помощи которых вы­полняют дуговую сварку в среде защитных газов. Их раз­рабатывают с использованием унифицированных узлов, что позволяет с наименьшими затратами выполнить на­ладку на сварку требуемых изделий. К таким унифициро­ванным узлам относятся прижимные и направляющие устройства, подающие механизмы, узлы, осуществляю­щие подъем и перемещение, а также механизмы автома­тической подачи присадочной проволоки. Полуавтоматы могут быть нескольких видов:

  • для сварки сплошной стальной проволокой;
  • для сварки сплошной алюминиевой проволокой;
  • для сварки сплошной стальной и алюминиевой про­волоками;
  • для сварки сплошной стальной или алюминиевой порошковой проволоками.

Кроме того, полуавтоматы могут различаться по спо­собу охлаждения горелки, регулировкой скорости подачи проволоки и методикой ее подачи и по конструктивным особенностям. При помощи этого универсального обору­дования обеспечивается сварка практически всех трудно­доступных мест с высоким качеством защиты сварочной ванны и дуги. Поэтому до 70% сварочных работ выполня­ется полуавтоматами. Различают полуавтоматы по марки­ровке. Первые две буквы в маркировке обозначают тип обо­рудования и способ сварки: «ПШ» — полуавтомат шлан­говый, «УД» — установка для дуговой сварки. При помощи третьей буквы в маркировке указывают на способ защиты сварочной дуги: «Г» — газовая, «Ф» — флюсовая. Первая цифра, проставленная после буквенного ин­декса, указывает величину сварочного тока (в сотнях ам­пер), а последующие цифры обозначают конкретную мо­дификацию изделия. И наконец, буквенный символ, проставленный после цифрового, обозначает климатическое исполнение полуавтомата: «У» — для эксплуатации в рай­онах с умеренным климатом; «ХЛ» — в районах с холод­ным климатом; «Т» — тропическое исполнение.

Принципиальная схема полуавтоматической установ­ки представлена на рис. Как правило, в комплект ус­тановки входят: выпрямитель — источник питания сва­рочной дуги; подающее устройство, предназначенное для подачи электродной проволоки в зону сварки; газовый клапан, предназначенный для снижения давления защит­ного газа, находящегося в специальном баллоне.

Подающее устройство сварочной проволоки может быть толкающего, тянущего и универсального типа. Как правило, оно состоит из следующих основных узлов: элек­тродвигателя, планетарной головки, блока управления, катушки с проволокой, электропневматического газово­го клапана.

Заслуживают внимания новые безредукторные конст­рукции подающих механизмов серии «Интермигмаг» с пульсирующей подачей проволоки, являющие­ся модификацией известного механизма «Изаплан». Со­стоит такой механизм из планетарной головки, корпус которой закреплен на полом валу электродвигателя по­стоянного тока. Укрепленные на ползунах подающие ро­лики прижимаются к сварочной проволоке и обкатываются вокруг нее при вращении якоря двигателя. Так как оси роликов расположены под углом 30-40° к оси прово­локи, это усилие разлагается на две составляющие — зак­ручивающее и осевое. Осевое усилие обеспечивает подачу проволоки, закручивающее — ее движение по шлангу. Скорость подачи проволоки регулируется изменением частоты вращения ротора двигателя постоянного тока.

При помощи подающего устройства обеспечивается последовательность включения исполнительных органов сварочного полуавтомата, необходимая скорость подачи сварочной проволоки, выбор рабочего режима сварки и т.д. Стабилизация выходных параметров источника пита­ния совместно со стабилизацией скорости подачи элект­родной проволоки позволяет получить сварные соедине­ния высокого качества.

Горелка является одним из важных узлов сварочного полуавтомата. Она предназначена для направления в зону сварочной дуги электродной проволоки, защитного газа или флюса. С помощью горелки возбуждается сварочная дуга, осуществляется формирование и направление струи защитного газа. Конструкции сварочных горелок унифи­цированы в соответствии с технологическими требова­ниями. Рукоятка горелки должна быть прочной и удобной в работе, поэтому ее изготавливают в форме, позволяющей обхват рукой сварщика. Для управления сварочным процессом и защиты руки сварщика от ожогов на рукоят­ке устанавливается предохранительный щиток и пуско­вая кнопка. Самыми распространенными являются руко­ятки круглой или овальной формы.

Токоведущая направляющая трубка соединяет токопровод с токосъемным наконечником. Конструкция труб­ки определяется сечением токоведущей части и необхо­димостью подвода защитного газа. По своему конструк­тивному исполнению направляющие трубки должны соответствовать требованиям гибкости и достаточной проводимости. Поэтому токопроводы изготавливают из мягкого провода, заключенного в изоляционную оболоч­ку, внутренний диаметр которой выбран таким образом, чтобы по нему можно было пропускать защитный газ или охлаждающую воду. Направляющие каналы токопровода служат для подачи электродной проволоки к сварочной горелке. Они представляют собой металлическую спираль, на которую надета стальная стягивающая оплетка и изо­ляционная трубка. Спираль может быть одно- или двухзаходной.

Наиболее ответственной частью горелки является ее сопло, представляющее собой токопроводящий наконеч­ник. Эта деталь горелки работает в условиях высокой тем­пературы и механического воздействия подающейся сва­рочной проволоки. Поэтому наконечник быстро изнаши­вается и требует замены. Для снижения изнашиваемости наконечника его хромируют, полируют или изготавлива­ют из твердых составов на медно-вольфрамовой основе. При больших сварочных токах, достигающих более 315 А, применяют принудительное охлаждение наконечника.

Применяют два типа наконечников: с поджимным контактом и без поджимного контакта. Поджимной кон­такт применяется при сварке тонкими электродными проволоками диаметром 0,8-1,2 мм. Простейшей горел­кой могут служить две медные трубки, вставленные друг в друга с зазором, по которому защитный газ подается в сопло. Для сварки в стесненных условиях используют сменные горелки различной длины. Технические характе­ристики унифицированных горелок типа ГДПГ для меха­низированной сварки плавящимся электродом приведе­ны в табл.

 

Технические характеристики унифицированных горелок

 

Тип горелкиНоминаль­ный сварочный ток,
А
ø электрод­ной про­волоки,
мм

Длина рукава,
м

Габариты горелки, мм

Масса (без рукавов),
кг

ДПГ-101-8УЗ1600,8-1,22254x60x1130,45
ГДПГ-101-9УЗ1600,8-1,21
ГДПГ-Ю1-10УЗ1600,8-1,22
ГДПГ-102-УЗ1601,2-1,620,6
ГДПГ-301-6У43151,2-1,43266x50x125
ГДПГ-301-7У43150,8-1,41
ГДПГ-301-8У43151,2-1,43
ГДПГ-302-У43151,6-2,020,7
ГДПГ-501-4У45001,6-2,03268x90x125
ГДПГ-603-У46301,6-2,53

 

Горелки для ручной дуговой сварки неплавящимся электродом состоят из корпуса, сменной цанги, сменно­го наконечника, колпачка, вентиля, предназначенного для пуска, регулирования и подачи защитного газа, ру­коятки, резинового рукава и газоподводящего кабеля. Го­релка снабжена сменными цангами, позволяющими зак­реплять вольфрамовые электроды различных диаметров. Как правило, такие горелки имеют водяное охлаждение.

Кроме перечисленного оборудования в комплект сва­рочного поста входит осушитель, редуктор с манометра­ми или расходомерами для точной дозировки газа и отсекатель газа.


УНИВЕРСАЛЬНЫЕ ПОЛУАВТОМАТЫ
 

Универсальные полуавтоматы позволяют выполнить быструю переналадку без существенных трудовых и мате­риальных затрат. К универсальным полуавтоматам отно­сят прежде всего модель, применяемую для сварки в среде углекислого газа сплошной или порошко­вой проволокой. У всех полуавтоматов подача электродной проволоки осуще­ствляется по пустотелому шлангу, поэтому они именуются шлан­говыми полуавтоматами.

Схематично полуавтомат для сварки в среде защитного газа состоит из следующих основных составные частей — сменная газо­вая горелка, подающий механизм, шланг подачи электродной про­волоки, кассеты для хранения проволоки, газового шланга, блока управления, источника питания, провода цепи управления, газо­вой аппаратуры, кабеля.

Мы часто упоминаем о сварочной горелке. Вкратце объясним ее устройство. Для этого обратимся к рисунку. Горелка предназна­чена для подачи в зону горения электродной проволоки и защитно­го газа.

Рукоятка сварочной горелки должна быть прочной и удобной для работы. С этой целью ее изготавливают из литьевого изоляци­онного материала. На рукоятке размещены предохранительный щиток и пусковая кнопка. Наиболее ответственными элементами сварочной горелки являются сопло и наконечник, подводящий ток.
 

1. Сварочная проволока
2. Газовое сопло
3. Токоподводящий мундштук
4. Корпус горелки
5. Рукоять горелки
6. Механизм подачи проволоки
7. Атмосфера защитного газа
8. Сварочная дуга
9. Сварочная ванна

Схема полуавтомата для сварки в защитных газах.

Сопло горелки — на нем из-за высокой температуры посто­янно возникает налипание расплавленного металла. Чтобы устра­нить это, металлическое сопло хромируют или полируют. Есть и другой выход — сопло изготавливают из керамического материа­ла. В случае, если сварочный ток достигает значения 315 А и выше, применяется дополнительное охлаждение сопла горелки. Пе­риодичность смены горелки — через каждые полгода.

Наконечники для подачи тока изготавливаются из меди с гарантированным сроком работы — от 5 до 10 часов непрерывной работы. Если наконечник изготовлен из бронзы,-то срок его служ­бы еще меньше. Изготавливаемые в последнее время медно-гра-фитовые наконечники имеют тоже малый срок службы, но лучше обеспечивают контакт и гарантируют хорошее скольжение, что важно при сварке алюминиевой проволокой. Только наконечник на медно-вольфрамовой основе обеспечивает более длительную работу без замены.

Проверка горелки перед сваркой


Режимы полуавтоматической сварки 

 

Помещения № 130 и № 132 — Технологии сварочного производства

Лебединая пристройка, номера № 130 и № 132

Основные лаборатории: (2) процессы ручной и полуавтоматической сварки

Предназначен для курсовой работы 100 уровней для обучения практической сварке. Приложения. Лабораторные помещения содержат следующее оборудование:

  • 6 077 квадратных футов учебной площади
    • Лаборатория №130 — 2757 кв.футов
    • Лаборатория № 132 — 3320 кв. Футов
  • Каждая лабораторная зона содержит (24) студенческие рабочие места.
  • Комбинированные процессы плазменно-дуговой резки (PAC) и кислородной резки (OFC) с 48-дюймовым экраном Тележки горения и нисходящая вентиляция
  • Дуговая сварка защищенным металлом (SMAW) / дуговая сварка вольфрамовым электродом (GTAW) — переменный / постоянный ток, продвинутый уровень Технология формы волны переменного тока
  • Газовая дуговая сварка металла (GMAW) / сварка порошковой проволокой (FCAW) — расширенная форма волны постоянного тока технология с пульсацией
  • Переносные установки для дуговой сварки алюминия и металла
  • Кислородно-ацетиленовая сварка (OAW)
  • Переносная кислородная топливная резка (OFC)
  • Ручная плазменная резка (PAC)
  • Станция раскроя вытяжной вентиляции для ручных OFC и PAC
  • Поворотный трубный позиционер с системой PAC и монтажным регулировочным кронштейном для горелки X-Y
  • Станция для испытаний сварных изделий WATTS — Испытания на разрыв углового шва, образцы на изгиб корня / торца, образцы для испытаний на растяжение
  • Электрод расходный печной; двухколесная опорная вольфрамовая шлифовальная машина; пьедестал с двумя колесами металличесая щетка
  • Полно-лабораторная система вентиляции
  • Общие образовательные ресурсы для лабораторий № 130 и № 132:
    • Шлифовальная комната (# 130A) — ленточные шлифовальные машины (4) с вентиляцией твердых частиц, (1) вертикальные дисковая шлифовальная машина, шлифовальные столы с нисходящим потоком (2) с частичными тисками
    • (2) Учебные системы по дуговой сварке с расширенными возможностями
    • (2) Системы обучения виртуальной реальности

Лебединая пристройка, помещения № 130 и № 132 — основные лаборатории: (2) ручная и полуавтоматическая сварка Процессы

Swan Annex Room # 131 — Лаборатория проверки качества: проверка и тестирование сварных конструкций

Swan Annex Room # 136 — Лаборатория специальных процессов: процессы ручной и полуавтоматической сварки

Swan Annex Room # 138 — Лаборатория контактной сварки: ручная, полуавтоматическая и роботизированная Сварочные процессы

Swan Annex Room # 140 — Лаборатория автоматизации сварки: полуавтоматическая, автоматическая и роботизированная Сварочные процессы

Лаборатория № 142 — Производство металлов: ручная и полуавтоматическая сварка и процессы изготовления

Дуговая сварка под флюсом (SAW) — Weld Guru

Дуговая сварка под флюсом (SAW) — это процесс, в котором соединение металлов производится дугой или дугой между неизолированным металлическим электродом или электродами и изделием.

На рабочем месте дуга защищена слоем гранулированного плавкого материала.

Давление не используется.

Компоненты оборудования для сварки под флюсом, необходимые для сварки под флюсом, показаны на рис. 10-59.

Оборудование состоит из сварочного аппарата или источника питания, механизма подачи проволоки и системы управления, сварочной горелки для автоматической сварки или сварочного пистолета и кабельной сборки для полуавтоматической сварки, бункера для флюса и механизма подачи, обычно системы восстановления флюса, и механизм передвижения для автоматической сварки.

Источник питания для дуговой сварки под флюсом должен быть рассчитан на 100-процентный рабочий цикл, поскольку операции сварки под флюсом являются непрерывными, а продолжительность сварки может превышать 10 минут.

Если используется источник питания с рабочим циклом 60 процентов, его номинальные характеристики должны быть снижены в соответствии с кривой рабочего цикла для 100-процентного режима работы.

Когда используется постоянный ток, переменный или постоянный, необходимо использовать систему подачи проволоки с чувствительным к напряжению электродом.

При использовании постоянного напряжения используется более простая система подачи проволоки с фиксированной скоростью.Система CV используется только с постоянным током.

Используются как генераторные, так и трансформаторно-выпрямительные источники питания, но выпрямительные машины более популярны.

Сварочные аппараты для дуговой сварки под флюсом мощностью от 300 до 1500 ампер.

Их можно подключать параллельно, чтобы обеспечить дополнительную мощность для сильноточных приложений.

Электропитание постоянного тока используется для полуавтоматических применений, но электропитание переменного тока используется в основном с машиной или автоматическим методом.

Для систем с несколькими электродами требуются специальные типы цепей, особенно когда используется переменный ток.

Для полуавтоматического применения сварочная горелка и кабельная сборка используются для передачи электрода и тока, а также для обеспечения потока на дуге.

Небольшой бункер для флюса прикреплен к концу кабельной сборки.

Электродная проволока подается через дно этого флюсового бункера через наконечник датчика тока к дуге.

Подача флюса из бункера в зону сварки осуществляется самотеком.

Количество подаваемого флюса зависит от того, насколько высоко расположен пистолет над изделием.

Бункерный пистолет может включать пусковой выключатель для инициирования сварки или может использовать «горячий» электрод, чтобы при прикосновении электрода к изделию подача начиналась автоматически.

Для автоматической сварки горелка присоединяется к двигателю подачи проволоки и включает в себя наконечники датчиков тока для передачи сварочного тока на электродную проволоку.

Бункер флюса обычно прикрепляется к горелке и может иметь клапаны с магнитным приводом, которые могут открываться или закрываться системой управления.

Другое оборудование, которое иногда используется, может включать в себя передвижную тележку, которая может быть простым трактором или сложным движущимся специализированным приспособлением. Блок рекуперации флюса обычно используется для сбора неиспользованного флюса подводной дуги и возврата его в питающий бункер.

Система дуговой сварки под флюсом может стать довольно сложной из-за включения дополнительных устройств, таких как шовные толкатели, ткачи и рабочие вездеходы.

Схема сварки
SAW
Рисунок 10-59. Блок-схема оборудования для сварки под флюсом.

Преимущества SAW

Основные преимущества процесса сварки под флюсом или под флюсом:

  1. сварной металл высокого качества.
  2. чрезвычайно высокая скорость и производительность наплавки
  3. гладкий, однородный сварной шов без брызг.
  4. мало или совсем нет дыма.
  5. нет дуги, поэтому необходимость в защитной одежде минимальна.
  6. высокий коэффициент использования электродной проволоки.
  7. простая автоматизация для высокого оператора.
  8. в норме, никаких манипулятивных навыков.
Сварка под флюсом для создания длинных стальных свай для поддержки океанской платформы.

Основные области применения SAW

Процесс под флюсом широко используется при производстве толстолистовой стали. Сюда входит сварка:

  • фасонный профиль
  • продольный шов трубы большего диаметра
  • производство деталей машин для всех видов тяжелой промышленности,
  • Производство сосудов и резервуаров для хранения и хранения под давлением

Он широко используется в судостроении для сращивания и изготовления узлов, а также во многих других отраслях промышленности, где используется сталь средней и большой толщины.

Применяется также для наплавочных и наплавочных работ, технического обслуживания и ремонта.

При сварке под флюсом флюс и проволока разделены. И то и другое влияет на свойства сварного шва, что требует от инженера выбора оптимальной комбинации для каждого проекта.

Ограничения процесса

Основным ограничением сварки под флюсом (SAW) является ограничение положения при сварке. Другое ограничение заключается в том, что он в основном используется только для сварки мягких и низколегированных высокопрочных сталей.

Высокая погонная энергия и цикл медленного охлаждения могут быть проблемой при сварке закаленной и отпущенной стали.При использовании дуговой сварки под флюсом необходимо строго соблюдать ограничение тепловложения для рассматриваемой стали.

Это может потребовать выполнения многопроходных сварных швов, если однопроходный сварной шов приемлем для низкоуглеродистой стали. В некоторых случаях экономические преимущества могут быть снижены до такой степени, что следует рассмотреть дуговую сварку порошковой проволокой или какой-либо другой процесс.

При полуавтоматической сварке под флюсом невозможность видеть дугу и лужу может быть недостатком для достижения корня шва с разделкой кромок и правильного заполнения или калибровки.

Демонстрация процесса сварки пилой.

Принципы работы

Процесс

Процесс сварки под флюсом показан на рисунке 10-60. Он использует тепло дуги между непрерывно подаваемым электродом и изделием.

Рисунок 10-60: Схема процесса сварки под флюсом (SAW)

Тепло дуги плавит поверхность основного металла и конец электрода. Металл, расплавленный с электрода, переносится через дугу к заготовке, где он становится наплавленным металлом сварного шва.

Экранирование достигается за счет слоя гранулированного флюса, который накладывается непосредственно на область сварного шва. Флюс вблизи дуги плавится и смешивается с расплавленным металлом сварного шва, помогая его очистить и укрепить.

Флюс образует стеклоподобный шлак, который легче по весу, чем наплавленный металл шва, и плавает на поверхности в качестве защитного покрытия.

Сварной шов погружается под этот слой флюса и шлака, отсюда и название сварка под флюсом. Флюс и шлак обычно покрывают дугу, так что ее не видно.

Нерасплавленная часть флюса может быть использована повторно. Электрод вводится в дугу автоматически из катушки. Дуга поддерживается автоматически.

Путешествие может быть ручным или машинным. Дуга возникает при запуске с плавким предохранителем или системой реверсирования или возврата.

Нормальный метод применения и возможности положения

Самым популярным методом нанесения SAW является машинный метод, при котором оператор контролирует сварочную операцию.

На втором месте по популярности находится автоматический метод, при котором сварка осуществляется нажатием кнопки.Процесс может применяться полуавтоматически; Однако этот способ нанесения не слишком популярен.

Этот процесс нельзя применить вручную, потому что сварщик не может контролировать невидимую дугу. Процесс дуговой сварки под флюсом — это сварочный процесс с ограниченными позициями.

Позиции сварки ограничены, потому что большая ванна расплавленного металла и шлака очень текучие и имеют тенденцию вытекать из стыка. Сварку можно легко выполнять как в горизонтальном, так и в горизонтальном положении.

В соответствии со специальными контролируемыми процедурами, можно выполнять сварку в горизонтальном положении, иногда называемом сваркой на 3 часа.

Для этого требуются специальные устройства для удержания флюса, чтобы расплавленный шлак и металл шва не могли уйти. Процесс нельзя использовать в вертикальном или верхнем положении.

Металлы свариваемые и диапазон толщины

Сварка под флюсом применяется для сварки низко- и среднеуглеродистых сталей, низколегированных высокопрочных сталей, закаленных и отпущенных сталей и многих нержавеющих сталей.

Экспериментально он использовался для сварки некоторых медных сплавов, никелевых сплавов и даже урана.

Металлы толщиной от 1/16 до 1/2 дюйма (от 1,6 до 12,7 мм) можно сваривать без подготовки кромок. С подготовкой кромок можно выполнять сварные швы за один проход на материале от 1/4 до 1 дюйма (от 6,4 до 25,4 мм).

При использовании многопроходной техники максимальная толщина практически не ограничена. Эта информация обобщена в таблице 10-22. Горизонтальные угловые швы можно выполнять до 3/8 дюйма.(9,5 мм) за один проход и в плоском положении угловые швы могут быть выполнены размером до 1 дюйма (25 мм).

Совместное проектирование

Хотя в процессе дуговой сварки под флюсом могут использоваться те же детали конструкции соединения, что и в процессе дуговой сварки защищенным металлом, для максимального использования и эффективности сварки под флюсом предлагаются другие детали соединения. Для сварных швов с канавкой можно использовать конструкцию с квадратными канавками толщиной до 5/8 дюйма (16 мм).

При превышении этой толщины требуются фаски.Используются открытые корни, но необходимы подкладки, так как расплавленный металл будет проходить через стык.

При сварке более толстого металла, если используется достаточно большая поверхность основания, опорный стержень может быть удален. Однако для обеспечения полного проплавления при сварке с одной стороны рекомендуется использовать подкладные стержни. Там, где доступны обе стороны, можно сделать подкладочный сварной шов, который плавится с исходным сварным швом, обеспечивая полное проплавление.

Сварочная цепь и ток

При сварке под флюсом или под флюсом в качестве сварочной мощности используется постоянный или переменный ток.Постоянный ток используется в большинстве приложений, в которых используется одиночная дуга. Используются как положительный электрод постоянного тока (DCEP), так и отрицательный электрод (DCEN).

Электропитание постоянного тока с постоянным напряжением более популярно для дуговой сварки под флюсом с использованием электродной проволоки диаметром 1/8 дюйма (3,2 мм) и меньшего диаметра.

Система постоянного тока обычно используется для сварки электродной проволокой диаметром 5/3 2 дюйма (4 мм) и большего диаметра. Схема управления мощностью CC более сложна, поскольку она пытается дублировать действия сварщика, чтобы сохранить определенную длину дуги.Система подачи проволоки должна определять напряжение на дуге и подавать электродную проволоку в дугу, чтобы поддерживать это напряжение. При изменении условий подача проволоки должна замедляться или увеличиваться, чтобы поддерживать заданное напряжение на дуге. Это усложняет систему управления. Система не может реагировать мгновенно. Запуск дуги более сложен при использовании системы постоянного тока, поскольку он требует использования реверсивной системы для зажигания дуги, отвода и последующего поддержания заданного напряжения дуги.

При сварке SAW на переменном токе всегда используется постоянный ток. Когда системы с несколькими электродными проводами используются как с дугой переменного, так и с постоянным током, используется система постоянного тока. Однако система постоянного напряжения может применяться, когда два провода подводятся к дуге, питаемой от одного источника питания. Сварочный ток для дуговой сварки под флюсом может варьироваться от 50 до 2000 ампер. Чаще всего сварка под флюсом выполняется в диапазоне от 200 до 1200 ампер.

Скорость наплавки и качество сварки

Скорость наплавки при дуговой сварке под флюсом выше, чем при любой другой дуговой сварке.Скорость наплавки одиночных электродов показана на рисунке 10-62. Скорость наплавки при сварке под флюсом зависит как минимум от четырех факторов: полярность, большой вылет, добавки во флюсе и дополнительные электроды. Скорость осаждения является самой высокой для отрицательного электрода постоянного тока (DCEN). Скорость осаждения для переменного тока находится между DCEP и DCEN. Полярность максимального тепла — отрицательный полюс.

Скорость наплавки при любом сварочном токе можно увеличить, увеличив «вылет».”Это расстояние от точки, где ток вводится в электрод, до дуги. При использовании «длинного вылета» степень проникновения уменьшается. Скорость наплавки может быть увеличена за счет добавок металла во флюс под флюсом. Дополнительные электроды можно использовать для увеличения общей скорости осаждения.

Качество наплавленного металла шва, наплавленного дуговой сваркой под флюсом, высокое. Прочность и пластичность металла сварного шва превышают таковые у низкоуглеродистой стали или низколегированного основного материала, когда используется правильное сочетание электродной проволоки и флюса под флюсом.Когда сварка под флюсом выполняется машиной или автоматически, человеческий фактор, присущий процессам ручной сварки, исключается. Сварной шов будет более однородным и без неровностей. Как правило, размер сварного шва за проход намного больше при дуговой сварке под флюсом, чем при любом другом процессе дуговой сварки. Подвод тепла выше, а скорость охлаждения ниже. По этой причине газам дается больше времени для выхода. Кроме того, поскольку плотность шлака под флюсом ниже плотности металла сварного шва, он будет всплывать в верхнюю часть сварного шва.Однородность и последовательность — преимущества этого процесса при автоматическом применении.

При использовании полуавтоматического метода нанесения может возникнуть ряд проблем. Электродная проволока может искривляться на выходе из сопла сварочной горелки. Эта кривизна может привести к возникновению дуги в месте, не ожидаемом сварщиком. При сварке в достаточно глубоких канавках кривизна может привести к тому, что дуга будет приходиться к одной стороне сварного соединения, а не к основанию. Это приведет к неполному сращиванию корней.Флюс останется у основания сварного шва. Другая проблема, связанная с полуавтоматической сваркой, заключается в том, что сварная канавка полностью заполняется или сохраняется точный размер, поскольку сварной шов скрыт и не может быть замечен во время его выполнения. Для этого нужно сделать дополнительный проход. В некоторых случаях получается слишком много сварного шва. Вариации раскрытия корня влияют на скорость движения. Если скорость движения одинакова, сварной шов может быть недостаточно или переполнен на разных участках. Высокая квалификация оператора решит эту проблему.

Есть еще одна проблема качества, связанная с очень большими наплавками за один проход.Когда эти большие сварные швы затвердевают, все примеси в расплавленном основном металле и в металле сварного шва собираются в последней точке замерзания, которая является центральной линией сварного шва. Если в этом месте будет собрано достаточное количество примесей, может произойти растрескивание по средней линии. Это может произойти при выполнении больших однопроходных плоских угловых швов, если пластины основного металла расположены под углом 45º от плоскости. Простое решение — избегать размещения деталей под истинным углом 45 °. Его следует изменять примерно на 10º, чтобы корень шва не совпадал с центральной линией углового шва.Другое решение — сделать несколько проходов, а не пытаться сделать большой сварной шов за один проход.

Другая проблема качества связана с твердостью наплавленного металла шва. Чрезмерно твердые отложения сварного шва способствуют растрескиванию сварного шва во время изготовления или во время эксплуатации. Рекомендуется максимальный уровень твердости 225 по Бринеллю. Причиной твердого сварного шва углеродистых и низколегированных сталей является слишком быстрое охлаждение, недостаточная обработка после сварки или чрезмерное поглощение сплава металлом шва.Чрезмерное поглощение сплава связано с выбором электрода со слишком большим количеством сплава, выбором флюса, который вводит слишком много сплава в сварной шов, или использованием слишком высоких сварочных напряжений.

При автоматической и машинной сварке дефекты могут возникать в начале или в конце шва. Лучшее решение — использовать вкладки биения, чтобы запуски и остановки находились на вкладках, а не на продукте.

Графики сварки

Процесс дуговой сварки под флюсом, применяемый машиной или полностью автоматически, должен выполняться в соответствии с графиками сварочных работ.Все сварные швы, выполненные с помощью этой процедуры, должны пройти аттестацию и испытания, предполагая, что были выбраны правильный электрод и флюс. Если графики отличаются более чем на 10 процентов, следует провести квалификационные испытания для определения качества сварки.

Сварочные переменные

Параметры сварки для дуговой сварки под флюсом аналогичны другим процессам дуговой сварки, за некоторыми исключениями.

При дуговой сварке под флюсом тип электрода и тип флюса обычно зависит от механических свойств, требуемых сварным швом.Размер электрода зависит от размера сварного шва и тока, рекомендованного для конкретного соединения. Это также необходимо учитывать при определении количества проходов или валиков для конкретного соединения. Сварные швы одного и того же размера могут выполняться за несколько или несколько проходов, в зависимости от желаемой металлургии металла шва. За несколько проходов обычно получается более качественный сварной металл. Полярность устанавливается изначально и зависит от того, требуется ли максимальное проникновение или максимальная скорость наплавки.

Основные переменные, влияющие на сварку, включают подвод тепла и включают сварочный ток, напряжение дуги и скорость перемещения.Сварочный ток — это самое главное. Для однопроходных сварных швов сила тока должна быть достаточной для желаемого проплавления без прожога. Чем выше сила тока, тем глубже проникновение. При многопроходной работе ток должен быть подходящим для получения сварного шва того размера, который ожидается при каждом проходе. Сварочный ток следует выбирать исходя из размера электрода. Чем выше сварочный ток, тем выше скорость плавления (скорость наплавки).

Напряжение дуги изменяется в более узких пределах, чем сварочный ток.Это влияет на ширину и форму борта. Более высокое напряжение приведет к тому, что борт будет шире и ровнее. Следует избегать чрезмерно высокого напряжения дуги, так как это может вызвать растрескивание. Это связано с тем, что чрезмерное количество флюса расплавляется, и избыточные раскислители могут быть перенесены в наплавленный слой, снижая его пластичность. Более высокое напряжение дуги также увеличивает количество потребляемого магнитного потока. Низкое напряжение дуги создает более жесткую дугу, которая улучшает проплавление, особенно в нижней части глубоких канавок.Если напряжение слишком низкое, получится очень узкий валик. У него будет высокий венец, и удалить шлак будет сложно.

Скорость движения влияет как на ширину борта, так и на проникновение. Более высокие скорости движения позволяют получить более узкие валики с меньшим проникновением. Это может быть преимуществом при сварке листового металла, когда требуются небольшие валики и минимальное проплавление. Однако при слишком высоких скоростях возникает тенденция к образованию подрезов и пористости, поскольку сварной шов быстрее застывает. Если скорость движения слишком низкая, электрод слишком долго остается в сварочной ванне.Это создает плохую форму валика и может вызвать чрезмерное разбрызгивание и вспышку через слой флюса.

Вторичные переменные включают угол электрода к изделию, угол самой работы, толщину слоя флюса и расстояние между наконечником датчика тока и дугой. Последний фактор, называемый «вылетом» электрода, оказывает значительное влияние на сварной шов. Обычно расстояние между контактным наконечником и деталью составляет от 1 до 1-1 / 2 дюйма (от 25 до 38 мм). Если вылет увеличивается сверх этого значения, это вызовет предварительный нагрев электродной проволоки, что значительно увеличит скорость наплавки.По мере увеличения вылета уменьшается проникновение в основной металл. Этому фактору необходимо уделить серьезное внимание, потому что в некоторых ситуациях требуется проникновение.

Также необходимо учитывать глубину слоя флюса. Если он слишком тонкий, то в потоке или вспышке дуги будет слишком много дуги. Это также может вызвать пористость. Если глубина флюса слишком велика, сварной шов может быть узким и выпуклым. Слишком большое количество мелких частиц во флюсе может вызвать точечную коррозию на поверхности, поскольку газы, образующиеся в сварном шве, могут не выйти.Иногда их называют следами клевок на поверхности борта.

Советы по использованию процесса

Одно из основных применений дуговой сварки под флюсом — это круговые сварные швы, при которых детали вращаются под неподвижной головкой. Эти сварные швы могут быть выполнены по внутреннему или внешнему диаметру. При дуговой сварке под флюсом образуется большая сварочная лужа и расплавленный шлак, который имеет тенденцию течь. Это означает, что на наружных диаметрах электрод должен располагаться впереди крайней вершины или положения на 12 часов, чтобы металл сварного шва начал затвердевать до того, как начнется наклон вниз.Это становится еще большей проблемой, когда диаметр свариваемой детали становится меньше. Неправильное положение электрода увеличивает вероятность улавливания шлака или плохой поверхности сварного шва. Также следует изменить угол наклона электрода и направить его в направлении движения вращающейся части. Когда сварка выполняется по внутренней окружности, электрод следует наклонить так, чтобы он находился впереди центра нижней части или в положении «6 часов».

Иногда свариваемая деталь имеет уклон вниз или вверх, чтобы обеспечить различные типы контуров сварных швов.Если работа идет под уклоном, борт будет иметь меньшую глубину проникновения и будет шире. Если сварной шов идет вверх с уклоном, валик будет иметь более глубокий провар и сузится. Это основано на том, что все остальные факторы остаются неизменными.

Сварочный шов будет отличаться в зависимости от угла наклона электрода по отношению к работе, когда работа выровнена. Это угол перемещения, который может быть углом сопротивления или толкания. Он оказывает определенное влияние на контур валика и проплавление металла шва.

Односторонняя сварка с полным проваром корня может быть получена дуговой сваркой под флюсом.Если сварное соединение спроектировано с плотным отверстием в корне и довольно большой поверхностью корня, следует использовать высокий ток и положительный электрод. Если соединение спроектировано с корневым отверстием и минимальной поверхностью основания, необходимо использовать опорный стержень, поскольку нет ничего, что могло бы поддерживать расплавленный металл сварного шва. Расплавленный флюс очень жидкий и будет проходить через узкие отверстия. Если это произойдет, металл шва последует за ним, и сварной шов прожигет соединение. Опорные стержни необходимы всякий раз, когда есть отверстие в корне и минимальная поверхность корня.

Медные опорные стержни используются при сварке тонкой стали. Без подкладных стержней сварной шов будет иметь тенденцию плавиться, и металл шва будет выпадать из стыка. Опорная планка удерживает металл сварного шва на месте, пока он не затвердеет. Медные опорные стержни могут охлаждаться водой, чтобы избежать возможности плавления и захвата меди в металле сварного шва. Для более толстых материалов основа может быть флюсом под флюсом или флюсом другого специального типа.

Варианты процесса SAW

Существует множество разновидностей процесса, которые дают дополнительные возможности для сварки под флюсом.Некоторые из наиболее популярных вариантов:

  1. Двухпроводные системы — один источник питания.
  2. Двухпроводные системы — отдельный источник питания.
  3. Трехпроводные системы — отдельный источник питания.
  4. Ленточный электрод для наплавки.
  5. Добавки порошка железа во флюс.
  6. Сварка с длинным вылетом.
  7. Электрически «холодная» присадочная проволока.
Многопроволочные системы

Многопроволочные системы обладают преимуществами, поскольку скорость наплавки и скорость перемещения могут быть улучшены за счет использования большего количества электродов.На рис. 10-68 показаны два метода использования двух электродов: один с одним источником питания, а другой — с двумя источниками питания. При использовании одного источника питания одни и те же приводные ролики используются для подачи обоих электродов в сварной шов. При использовании двух источников питания необходимо использовать отдельные механизмы подачи проволоки для обеспечения электрической изоляции между двумя электродами. С двумя электродами и раздельным питанием можно использовать разные полярности на двух электродах или использовать переменный ток на одном и постоянный ток на другом.Электроды можно размещать рядом. Это называется поперечным положением электрода. Их также можно разместить один перед другим в положении тандемного электрода.

Двухпроводной тандем

Двухпроводной тандемный электрод с индивидуальными источниками питания используется там, где требуется очень глубокое проникновение. Ведущий электрод положительный, а задний электрод отрицательный. Первый электрод создает копающее действие, а второй электрод заполняет сварной шов.Когда две дуги постоянного тока находятся в непосредственной близости, существует тенденция к взаимному влиянию дуги между ними. В некоторых случаях второй электрод подключается к переменному току, чтобы избежать взаимодействия дуги.

Трехпроводная тандемная система

Трехпроводная тандемная система обычно использует переменный ток на всех трех электродах, подключенных к трехфазным системам питания. Эти системы используются для изготовления высокоскоростных продольных швов труб большого диаметра и сборных балок. Чрезвычайно высокие токи могут использоваться при соответственно высоких скоростях движения и производительности наплавки.

Система сварки лент

Система сварки полос используется для наплавки низкоуглеродистой и легированной стали, как правило, нержавеющей сталью. Получается широкий валик с равномерным и минимальным проплавлением. Этот вариант процесса показан на рисунке 10-69. Он используется для покрытия внутренней части сосудов, чтобы обеспечить коррозионную стойкость нержавеющей стали, используя при этом прочность и экономичность низколегированных сталей для толщины стенок. Требуется устройство подачи ленточных электродов, и обычно используется специальный флюс.Когда ширина полосы превышает 2 дюйма (51 мм), используется устройство колебания магнитной дуги для обеспечения равномерного прожигания полосы и равномерного проплавления.

Прочие опции

Другой способ увеличения скорости наплавки при дуговой сварке под флюсом — добавление компонентов на основе железа в соединение под флюсом. Железо в этом материале расплавится под действием тепла дуги и станет частью наплавленного металла шва. Это увеличивает скорость наплавки без ухудшения свойств металла шва.Добавки для металлов также могут использоваться для специальных наплавок. Этот вариант может использоваться с однопроводной или многопроволочной установкой.

Другой вариант — использование электрически «холодной» присадочной проволоки, подаваемой в зону дуги. «Холодный» присадочный пруток может быть сплошным или порошковым для добавления специальных сплавов к металлу сварного шва. Регулируя добавление подходящего материала, можно улучшить свойства наплавленного металла шва. Можно использовать порошковую проволоку для электрода или для одного из нескольких электродов для введения специальных сплавов в наплавленный металл шва.Каждый из этих вариантов требует специальной инженерии, чтобы гарантировать, что правильный материал добавлен для обеспечения желаемых свойств отложения.

Типичные области применения

Процесс дуговой сварки под флюсом широко используется при производстве большинства тяжелых стальных изделий. К ним относятся сосуды под давлением, котлы, резервуары, ядерные реакторы, химические сосуды и т. Д. Другое применение — изготовление ферм и балок. Применяется для приварки фланцев к стенке. Промышленность тяжелого оборудования является основным потребителем дуговой сварки под флюсом.

Используемые материалы

При сварке под флюсом используются два материала: сварочный флюс и плавящаяся электродная проволока.

Флюс для дуговой сварки под флюсом защищает дугу и расплавленный металл шва от вредного воздействия атмосферного кислорода и азота. Флюс содержит раскислители и поглотители, которые помогают удалять загрязнения из расплавленного металла шва. Флюс также обеспечивает введение сплавов в металл сварного шва. Когда этот расплавленный флюс охлаждается до стекловидного шлака, он образует покрытие, защищающее поверхность сварного шва.Нерасплавленная часть флюса не меняет своей формы и не влияет на ее свойства, поэтому ее можно восстанавливать и использовать повторно. Флюс, который плавится и образует шлаковое покрытие, необходимо удалить со сварного шва. Это легко сделать после того, как сварной шов остынет. Во многих случаях шлак действительно отслаивается, не требуя особых усилий для удаления. При сварке с разделкой кромок затвердевший шлак может быть удален с помощью отбойного молотка сварщика.

Флюсы

разработаны для конкретных применений и для определенных типов наплавок.Флюсы под флюсом имеют разный размер частиц. Многие флюсы не имеют маркировки по размеру частиц, потому что размер разработан и произведен для предполагаемого применения.

Нет спецификации для флюсов под флюсом, используемых в Северной Америке. Однако метод классификации флюсов заключается в наплавленном металле сварного шва, полученном с помощью различных комбинаций электродов и запатентованных флюсов для дуговой сварки под флюсом. Это соответствует стандарту Американского общества сварки. Электроды из углеродистой стали и флюсы для дуговой сварки под флюсом.Таким образом, можно назначить флюсы для использования с различными электродами для обеспечения желаемого анализа наплавленного металла шва.

Ссылки на SAW

Процесс дуговой сварки под флюсом

K11-100 100-миллиметровый патрон + мини сварочный позиционер BY-10 Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка — специальное предложение # 4CFF5

Дешевый 100-миллиметровый патрон K11-100 + поворотный стол BY-10 3-х кулачковый токарный патрон Сварочный стол Полуавтомат Сварочный оптом.Покупайте качественные сварочные аппараты для труб напрямую у поставщиков Golden Silk Road Industrial Limited. Наслаждайтесь ✓Бесплатная доставка по всему миру! ✓ Распродажа с ограниченным сроком ✓ Легкий возврат.

K11-100 100-миллиметровый патрон + сварочный мини-позиционер BY-10 Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка Технические характеристики

  • Фирменное наименование JINSLU
  • OriginCN (Origin)
  • Сертификация Нет
  • Вес
  • Диаметр
  • Стандарт
  • Размеры 370 * 270 * 215 мм
  • Использование сварочного позиционера
  • Номер моделиBY-10
  • с патроном K11-100 Патрон 100 мм
  • Емкость (по горизонтали / вертикали) 10 кг / 5 кг
  • Диаметр стола 180 см
  • Высота стола 215 см
  • Скорость вращения
  • Диапазон наклона 0-90
  • Двигатель вращения 15 Вт

K11-100 100 мм патрон + BY-10 Mini Сварочный позиционер Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка Описание

Купить K11-100 100-миллиметровый патрон + BY-10 Mini Сварочный позиционер Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка от продавца Golden Silk Road Industrial Limited с доступной ценой и высшей гарантией на Pocketochbok.Вы можете получить потрясающую скидку 15%, сделок и сэкономить 44,25 доллара США при покупке этого товара в разделе Распродажа сегодня на Aliexpress. Таким образом, вам нужно всего лишь заплатить 250,75 долларов США за 100-миллиметровый патрон K11-100 + поворотный стол с мини-сварочным позиционером BY-10 3-кулачковый токарный патрон Сварочный стол для полуавтоматической сварки.

Мы предлагаем широкий выбор аналогичных трубосварочных аппаратов на Pocketochbok, так что вы можете найти именно то, что ищете. У нас также есть тысячи 100-миллиметровых патронов K11-100 + BY-10 Mini Welding Positioner Turntable 3-х кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка Акция, всегда по доступной цене и высочайшему качеству.Кроме того, вы можете выбирать между диапазоном цен на сварочные аппараты, фирменными наименованиями сварочных аппаратов или спецификациями сварочных аппаратов, которые, по вашему мнению, имеют решающее значение для вашего любимого товара.


Китайский Youtube:

Youtube:

youtu.be/ApC5piNj8FA

Продукт:

набор кулачков Задняя пластина M14 1 шт.

BY-10 1 комплект

100006

No.

ЭЛЕМЕНТ

БЛОК

BY-10

1

Горизонтальная грузоподъемность

Грузоподъемность по вертикали

кг

5

3

Диаметр рабочего стола

мм

6 Высота рабочего стола

мм

219

5

Угол наклона рабочего стола

0

0

0-90 945 Скорость рабочего стола

об / мин 90 007

2-10

7

Номинальный сварочный ток

A

07

9045

220 В переменного тока, 50 Гц

9

Приводной двигатель

24 В 20 Вт

10

9045 9489

Инструкция

Поворотная структура приводится в действие мотором постоянного тока

9000 с бесступенчатой ​​регулировкой. Диапазон плитки поворотного стола 0 ~ 90, рабочий можно установить вал, так что сварка под произвольным углом может быть достигнута.

Специальная антиэлектромагнитная конструкция, которая снижает высокочастотные помехи при сварке TIG, в то же время может эффективно улучшить качество сварки.

Контроллер времени может быть предоставлен для контроля рабочего состояния и рабочего времени, что может обеспечить связь позиционера и сварочного аппарата.

Регулируемая опора сварочной горелки может быть оснащена для фиксации положения сварочной горелки.

Сварочный патрон и задняя труба с пневмоприводом могут быть оснащены для достижения функции самоудержания на заготовке.

Сварочные аппараты для труб напрямую от поставщиков из Китая + Купить качественные инструменты для трубок BY Позиционер Поворотный стол 3-х кулачковый токарный патрон Сварочный стол полуавтоматическая сварка Наслаждайтесь ✓Бесплатная доставка по всему миру! ✓ Распродажа с ограниченным сроком ✓ Легкий возврат.

Если вас интересуют другие продукты, связанные с K11-100 100-миллиметровый патрон + BY-10 Mini Welding Positioner Turntable 3-х кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка , вы можете найти все это на нашем веб-сайте, так как у нас есть отличные изделия для сварочных аппаратов для труб, которые вы можете проверить, сравнить и приобрести в Интернете.У нас также есть много привлекательных продуктов, которые вы, возможно, захотите увидеть из наших связанных категорий: патрон k11 100, сварочный шов, ременной привод, мини-станок для токарного станка по металлу, кулачок k11 100, стабилизатор поперечной устойчивости, сварочный аппарат TIG, планка, мини-сварочный поворотный стол, Поворотный стол для мужчин, цанговый патрон, поворотный сварочный позиционер своими руками, и многое другое.

Мы не только даем вам разумную цену и лучшее качество для трубных сварочных аппаратов на Pocketochbok, мы также хотим дополнить ваши решения и помочь вам в покупке этого предмета, предлагая вам беспристрастный патрон K11-100 100mm + BY -10 Мини-сварочный позиционер Поворотный стол 3-х кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка обзоры и оценки реальных клиентов в Интернете.

Не забывайте, что ограниченные по времени предложения для трубосварщиков и эксклюзивные скидки для трубосварщиков только на Pocketochbok. Просто нажмите кнопку Купить сейчас выше, чтобы получить дополнительную информацию об этом K11-100 100-миллиметровом патроне + мини-сварочный позиционер BY-10 Поворотный стол 3-кулачковый токарный патрон Сварочный стол Полуавтоматическая сварка .

Роботизированная и ручная сварка | Fairlawn Tool Inc.

Опубликовано: Брайан Рид на 11 апреля 2018 г.

Роботизированный vs.Ручная сварка

Одним из самых важных достижений в области сварки за последние годы является роботизированная сварка, или автоматическая сварка. В чем преимущества роботизированной сварки перед ручной сваркой? Каковы плюсы и минусы каждого из них? Вот что вам нужно знать.

Преимущества роботизированной сварки

Во-первых, важно понять, как работают сварочные роботы. Есть полностью автоматизированные сварочные процессы и полуавтоматические сварочные процессы. В полуавтоматической сварочной установке оператор вручную загружает металл и удаляет его после завершения сварки.В полностью автоматизированном процессе машины перемещают свариваемый материал на протяжении всего процесса от начала до конца.

У автоматизированной сварки четыре основных преимущества:

  • Лучшее качество сварки — Автоматизированный процесс позволяет оператору поддерживать целостность сварного шва с помощью электронных контроллеров процесса сварки. Кроме того, автоматическая сварка отличается высокой повторяемостью. Роботы каждый раз следуют одному и тому же процессу, поэтому результаты с большей вероятностью будут согласованными.
  • Повышенная производительность — Естественно, роботы могут работать быстрее людей без потери точности. Кроме того, они не устают и не нуждаются в перерывах.
  • Меньше брака — Благодаря высокому уровню точности и эффективности, которые возможны при роботизированной сварке, количество брака сокращается.
  • Снижение затрат на рабочую силу — Даже в полуавтоматических сварочных установках вам нужно платить меньше людей.

Недостатки сварочных роботов

Итак, каковы ограничения роботизированной сварки?

  • Стоимость — В долгосрочной перспективе вы можете сэкономить деньги на трудозатратах, но в краткосрочной перспективе автоматическая сварочная система требует значительных инвестиций, которые могут окупиться через некоторое время.
  • Недостаток гибкости — Автоматизированные системы отлично умеют делать одно и то же снова и снова. Однако если вам нужны сварочные роботы для выполнения множества различных производственных задач, потребуется время, чтобы их перенастроить, что может быть дорогостоящим.
  • Риск — Если вы попадете в зависимость от роботов при сварке, у вас могут возникнуть серьезные проблемы, если ваш основной сварочный робот выйдет из строя.

Преимущества ручной сварки

Естественно, ручная сварка по-прежнему очень популярна.В чем преимущества ручной сварки?

  • Больше гибкости — Вашему персоналу, вероятно, не нужно проходить переподготовку каждый раз, когда они устраиваются на сварочную работу. Как только появится проект по сварке, сварщики-люди могут сразу же приступить к делу, в то время как вам может потребоваться гораздо больше времени для роботов-сварщиков.
  • Заменяемость — Если один из ваших рабочих не умеет сваривать, вы можете легко заменить его другим. Вам не нужно никого отправлять в ремонт, прежде чем вы сможете продолжить производство.
  • Осведомленность — Если в производственном цехе есть какая-то проблема, рабочий часто замечает ее раньше, чем робот-сварщик, который обычно продолжает работать, пока что-то не приведет к его неисправности.

Ограничения ручной сварки

Однако есть некоторые ограничения на ручную сварку, в том числе:

  • Риск — Ранение человека во время сварки может стать очень серьезной проблемой. Робот может сломаться, но ему нельзя навредить.
  • Скорость — Роботы намного быстрее людей, когда дело касается механических операций.
  • Эффективность — Роботы обладают гораздо большей точностью, чем люди.

Инструмент для автоматической сварки Fairlawn

Fairlawn Tool имеет возможности как для автоматической, так и для ручной сварки. Автоматическая сварка часто используется для изготовления таких деталей, как:

  • Соленоиды
  • Датчики
  • Лампочки
  • Топливные фильтры
  • Фитинги

Для роботизированной сварки лучше всего подходят другие изделия, где требуется высокоточная или повторяющаяся сварка.Чтобы узнать больше, свяжитесь с Fairlawn Tool сегодня.

Свяжитесь с нами

Полуавтоматическая этикетировочная машина для круглых бутылок

Деформированный стальной стержень для строительства

Материал: OEM / изготовленные на заказ детали из алюминиевого сплава Литые детали, Kawasaki Z800 Refit CNC Titanium Ruler Directional Damper Damping Bracket, 400E, 500, GR460, GR40. 6-50MM

Ниже приведены характеристики деформированного стержня

EDM Brass Wire Cuzn37 0.25 мм 900n

Марка

Технические данные исходного химического состава (%)

C Mn Si S P B

9088 Сплав OEM 90/44 Детали отливки Детали, отлитые под давлением

â ¤0,25 â ¤1.60

â ¤0,80

â ¤ 0,045

â 0.045

â ‰ 04000

мощность

Стеклянная водка / вино / спиртные напитки / бутылка ликера (Н / см2)

Солнечная генераторная система с контроллером MPPT Гибридный солнечный инвертор Инвертор чистой синусоидальной мощности (6000 Вт Вт 24 В 48 В MPPT50A) (Н / см2 )

Удлинение (%)

â ¥ 335

â ¥ 490

â 16

China Fertilizer чин с ЧПУ Кронштейн демпфера направленного демпфера
Марка

Технические данные исходного химического состава (%)

C Mn Si S P V с ЧПУ Титан 904 Kitas
â ‰ ¤0.25 â ¤1.60

â ¤0.80

â ¤0.045

â ¤ 0.045

0.04-0.12

9044 9044 Стекло / Вино / Крепкие алкогольные напитки / Бутылка ликера (Н / см2)

Система солнечного генератора с контроллером MPPT Гибридный солнечный инвертор Инвертор мощности чистой синусоидальной волны (6000 Вт ватт 24 В 48 В MPPT50A) (Н / см2)

Удлинение (%)

â ‰ 400

â ‰ ¥ 570

â 14

Детали упаковки Детали упаковки: (1) 6-12 мм: упаковка в катушке со стальной проволокой.(2) 10-40 мм: жесткость арматуры в связке со стальной проволокой. Отгрузка: обычной длиныUS $ 526 / Тонны | 1 Тонна / Тонна (Мин. Заказ)

Сварочная витрина Два | Производство и металлообработка

ЗАКАЛЕННЫЕ, ЧРЕЗВЫЧАЙНО ПЛОСКИЕ СВАРОЧНЫЕ СТОЛЫ
Strong Hand Tools ™ (Пико Ривера, Калифорния), производитель сварочных зажимов Strong Hand Tools®, сварочных столов BuildPro и североамериканский дистрибьютор немецких высокоточных сварочных столов Siegmund, предлагает новые сварочные столы Professional Extreme 750 Siegmund, самые твердые, самые прочные и чрезвычайно плоские сварочные столы, доступные в мире.Изготовленные из высококачественной инструментальной стали со сквозной закалкой, сварочные столы Professional Extreme 750 обработаны нитридом плазмы, в результате чего стол с двойной закалкой прослужит вам весь срок службы. Этот недавно оптимизированный процесс закалки приводит к получению прочного жесткого футляра, который продлевает срок службы поверхности стола, защищает от ударов и создает глянцевый черный блеск.

Плазменная нитрация — это не имеющая аналогов обработка поверхности и отпуск, обеспечивающая более износостойкую и коррозионно-стойкую поверхность.Столы Professional Extreme 750 имеют твердость поверхности 750 HV (~ 60 HRC). Выберите Систему 28 (отверстия 28 мм) или Систему 16 (отверстия 16 мм).

Strong Hand Tools, 7141 Paramount Boulevard, Pico Rivera, CA

, 800-989-5244 x213, [email protected] , www.stronghandtools.com .

СВАРКА ЭЛЕКТРОДОВ ДЛИТЕЛЬНАЯ ДЕСЯТКА
Производитель распределительных устройств испытал задние литые электроды TZM от Plansee SE (Österreich, Австрия) для контактной сварки и обнаружил, что из-за бесшовного соединения с электрододержателем эти задние литые электроды имеют значительно более длительный срок службы, чем их паяная альтернатива.До сих пор этот производитель распределительных устройств использовал паяные электроды для соединения серебряных контактов с латунью или медью. В этом процессе электрод мог сварить около 5000 точек, прежде чем его пришлось переделывать или даже менять. Plansee посчитал этот результат слишком низким и порекомендовал покупателю проверить свои электроды TZM, отлитые с обратной стороны.

Согласно первым полученным результатам, электродами, отлитыми назад, удалось сварить до 50 000 точек со скоростью около 120 точек сварки в минуту, прежде чем они были переработаны для дальнейшего использования.Другими словами, эти задние литые электроды прослужили в десять раз дольше. В отличие от паяных электродов, версия с обратной литой обеспечивает постоянную теплопроводность, а также постоянное электрическое сопротивление электрода от бесшовного соединения, которое проходит между электродом TZM и электрододержателем, который сделан из меди. Чем лучше это соединение, тем дольше срок службы электрода и тем более воспроизводимы результаты сварки.

Plansee USA LLC, 115 Бульвар Конституции, Франклин, Массачусетс 02038, 508-553-3800, факс: 508 553-3823, usa @ plansee.com , www.plansee.com .

ТОЧЕЧНАЯ СВАРКА ЦВЕТНЫХ И НЕМЕТАЛЛИЧЕСКИХ ПЛОСКИХ МАТЕРИАЛОВ
Переходя на использование легких материалов, производители оригинального оборудования ищут наиболее эффективный способ снижения веса без ущерба для качества или безопасности. Существующие технологии, необходимые для обработки этих более легких материалов, обычно увеличивают вес или стоимость, приводят к низкой прочности сварного шва или дефектам пористости. Но система точечной сварки трением SpotMeld ™ от компании Coldwater Machine Company (Колдуотер, Огайо) решает эти проблемы и является достаточно эффективной для работы в производственных условиях.

Основанная на технологии точечной сварки трением с перемешиванием (RFSSW), эта система выполняет точечную сварку алюминия (серии 1000-7000), магния, цветных металлов и разнородных листовых материалов в качестве альтернативы процессам точечного соединения, таким как контактная точечная сварка, лазерная сварка и клепать. Сварочные аппараты для точечной сварки трением SpotMeld можно настроить в соответствии со спецификой применения и установить на любом промышленном роботе. Контроллер робота может по запросу использовать различные рецепты сварки, что обеспечивает очень гибкую производственную систему.

Опираясь на технологию RFSSW, система SpotMeld использует трение вращения для нагрева материалов вместе с давлением, чтобы сковать детали вместе с использованием износостойких инструментов для соединения двух или более поверхностей. Обычно между инструментом и материалом возникает тепло, создавая мягкую область. Затем прикладывается давление, в результате чего получается соединение в твердом состоянии. Помимо способности соединять разнородные и легкие материалы, преимущества включают высококачественные соединения с небольшой зоной термического влияния, постоянство дублирования сварных швов и более быстрое время сварки, а также экологическую чистоту и безопасность без присадочного материала, брызг, дыма и т. Д. радиационные или защитные газы.

Coldwater Machine Company, 911 North Second Street, Coldwater, OH 45828-8736, 419-678-4877, факс: 419-678-3565, coldwatermachine.com/services/spin-welding.

МОЩНЫЙ ПЕРЕНОСНОЙ ПИТАТЕЛЬ ПРОВОЛОКИ
ESAB Welding & Cutting Products (Флоренция, Южная Каролина) предлагает MobileFeed 201AVS, прочный переносной механизм подачи проволоки в виде чемодана с мощными механизмами подачи, которые обеспечивают равномерную и безопасную подачу проволоки для исключительной надежности и плавной работы в любых условиях. диапазон промышленных сварочных работ.Этот небольшой по размеру и чрезвычайно легкий механизм подачи проволоки весит менее 30 фунтов (13,6 кг) и предназначен для прохождения через смотровой колодец диаметром 16 дюймов (41 см).

MobileFeed 201AVS — это универсальный механизм подачи проволоки с измерением напряжения для использования с любым источником питания для сварки CV или CC, питание которого отключается от дуги, поэтому для основных операций требуется только сварочный кабель. Высокий рабочий цикл этого фидера (450 А при 60 процентах) обеспечивает безотказную работу для приложений с высоким током. Быстросменный четырехвалковый механизм подачи обеспечивает мощную и надежную подачу проволоки и быструю замену проволоки без инструментов.Цифровые измерители напряжения и скорости подачи проволоки (WFS) обеспечивают большее время дуги и экономию трудозатрат при выполнении критических сварных швов с использованием определенных параметров сварки.

MobileFeed 201AVS имеет сверхударопрочный, огнестойкий корпус, который защищает от грязи, металлического песка и влаги, а также от экстремальных повреждений от искр при шлифовании, агрессивных химикатов и падений. Дополнительный пульт дистанционного управления позволяет регулировать напряжение вдали от источника питания, сокращая время настройки и обеспечивая длинные сварные швы в труднодоступных местах.В этом механизме подачи проволоки скорость подачи проволоки регулируется тахометром для повышения точности и стабильности скорости подачи. Он также оснащен дисплеем, защищающим от солнца, и более широкими углами обзора, которые позволяют легко считывать настройки в сложных условиях освещения.

ESAB Welding & Cutting Products, PO Box 100545, 411 South Ebenezer Road, Florence, SC 29501, 843-669-4411, факс: 843-664-4258, www.esabna.com .

НАПОЛНИТЕЛЬНЫЕ МЕТАЛЛЫ ДЛЯ ВСЕХ ПРИМЕНЕНИЙ
Компания Hobart Brothers (Трой, Огайо) предлагает свой полный каталог 2015 года, 152-страничный каталог, посвященный теме кампании бренда «Связующий галстук».Новый каталог знаменует собой следующий шаг в консолидации бренда, которая началась в мае 2013 года и перешла все предыдущие бренды (Tri-Mark®, McKay®, Corex® и MAXAL®) под единый бренд Hobart, чтобы упростить процесс выбора присадочных металлов. .

Все присадочные металлы Hobart, включая полный ассортимент трубчатой ​​проволоки (порошковой и порошковой), сплошной проволоки и стержневых электродов для сварки углеродистых и низколегированных сталей, нержавеющих сталей и алюминия, а также варианты для наплавки твердым сплавом — представлены в каталоге.В каталоге также представлены новые предложения бесшовной проволоки MEGAFIL® и семейство проволоки с низким содержанием марганца FabCO® Element ™.

Полный каталог 2015 содержит технические характеристики продукции, включая химические и механические свойства, а также рабочие параметры; информация о классификации присадочного металла Американского общества сварки (AWS); варианты упаковки; таблицы, помогающие рассчитать необходимое количество присадочного металла для обычных сварных швов; и многое другое — все в удобном для чтения формате. PDF-копии полного каталога 2015 года можно скачать на HobartBrothers.ru / support / catalogs или бумажные копии, запрошенные на HobartBrothers.com/support/literature-request.

Hobart Brothers Company, 101 Trade Square East, Troy, OH 45373, 800-424-1543, факс: 800-541-6607, [email protected] , www.HobartBrothers.com .

СИСТЕМА СВАРКИ ДЛЯ ГОРНОЙ ДОБЫЧИ, СТРОИТЕЛЬСТВА И СВАРКИ ТРУБ
Компания Lincoln Electric (Кливленд, Огайо) предлагает сварочный аппарат / генератор с приводом от двигателя Vantage 520 SD, который объединяет более крупные Vantage 600 SD и Air Vantage 600 SD для создания Группа сварщиков для тяжелых условий эксплуатации, подходящая для таких экстремальных условий, как горнодобывающая промышленность, строительство и сварка труб.Каждый из них оснащен двигателем, соответствующим стандарту Tier 4 Final (T4F), который соответствует всем новым стандартам EPA по выбросам дизельного топлива. Vantage 520 SD разработан для обработки множества процессов, в том числе:

  • Сварка палкой
  • Сварка TIG
  • Сварка МИГ
  • Сварка труб
  • Порошковая проволока для сварки
  • Дуговая строжка

Для обеспечения улучшенных характеристик дуги и других преимуществ сварочные аппараты серии Vantage SD используют новую цифровую платформу.Результатом является более плавное действие дуги, более быстрый отклик дуги и улучшенные возможности сварки труб, в том числе уменьшение разбрызгивания. Новые возможности импульсного режима обеспечивают улучшенное управление дугой при работе вне положения и могут использоваться для уменьшения тепловложения, что приводит к меньшему искажению основного материала.

Цифровая связь

ArcLink® обеспечивает быструю и надежную цифровую связь с продвинутыми механизмами подачи проволоки, такими как портативный полуавтоматический механизм подачи проволоки Power Feed® 25M или другими компонентами. Имея доступ к Power Feed® 25M, сварочные бригады могут воспользоваться предустановками в пользовательской памяти для стандартных повторяющихся процедур сварки, а также ограничениями и блокировками оператора.Обе функции помогают избежать ошибок оператора при сварке критических сварных швов. Vantage 520 SD оснащен двигателем Deutz® D2.9L4 мощностью 34,8 л.с., который позволяет сварщику вырабатывать 520 А / 30 В при 60-процентном рабочем цикле и 450 А / 32 В при 100-процентном рабочем цикле. Кроме того, 520 SD способен выдавать до 11000 Вт однофазного или 17000 Вт трехфазного генератора переменного тока напряжением 120/240 вольт.

The Lincoln Electric Company, 22801 Saint Clair Avenue, Кливленд, Огайо, 44117-1199, 888-935-3876, факс: 216-383-2699, www.lincolnelectric.com .

Сварка

Список предприятий:


*** Новый 5 ‘x 10’ 4000 Вт лазер Platino с челночным столом ***



ТОЧНАЯ СВАРОЧНАЯ СВАРОЧНАЯ СВАРОЧНАЯ СВАРОЧКА

Прецизионная обработка листов с ЧПУ

000 ЧПУ

ПЕЧАТЬ

000 ЧПУ

ПОЛНАЯ ПОЛИРОВКА НЕРЖАВЕЮЩЕЙ СТАЛИ

Пескоструйная обработка / СТЕКЛЯННЫЙ БУС / ДРОБИЛКА (ШЛИФОВАНИЕ)


A.W.S. D1.1

B31.1

MIL-STD-278

MIL-STD-1595A

A.S.M.E. РАЗДЕЛ IX


БЕСКОНТАКТНАЯ ВЕРТИКАЛЬНАЯ ЛЕНТОЧНАЯ ПИЛА

14 ”ХОЛОДНАЯ ПИЛА SCOTCHMAN — АВТОМАТИЧЕСКАЯ

12” X18 ”КОЗЕНОВАЯ ПИЛА — АВТОМАТИЧЕСКАЯ

DIGITAL READOUT

0007

000 70007 АЛЮМИНИЙ


VMX50 HURCO -CNC- 50 «x26» x24 «НАСТОЛЬНЫЙ ПУТЕШЕСТВИЕ

VM20 HURCO -CNC- 40″ x20 «x20» НАСТОЛЬНЫЙ ПУТЕШЕСТВИЕ

VM2 HURCO -18 «x20» TRAVEL

LC-50RS WESEL –CNC – ОБРАБАТЫВАЮЩИЙ ЦЕНТР

W / 9 ”X 42” ТАБЛИЦА

1-1 / 2 VSK VICTOR –CNC-ОБРАБАТЫВАЮЩИЙ ЦЕНТР

W / 9 ”X 42” СТОЛ

D

СВЕРЛИЛЬНЫЕ ПРЕССЫ

HARRISON MODEL 400 СТАНОК С ЗУБЧАТОЙ ГОЛОВКОЙ

С ИНСТРУМЕНТОМ


НАПРАВЛЯЮЩАЯ РЕЗЬБОЙ — RIDGID

AIR OPERATOR PEM SERTER


КАНАВОЧНЫЙ СТАНОК


ГИДРАВЛИЧЕСКИЙ РОЛИК 3 «X 36»

РУЧНОЙ РОЛИК 2 «X 36»


HTP-1000 CNC NISSHINBO — ДАВЛЕНИЕ 9000 ¼ МАКСИМАЛЬНОЕ УПРАВЛЕНИЕ 22 ТН


LCM 1250HK MKII NISSHINBO -2200 Вт ТАБЛИЦА 48 «X96»

МОЩНОСТЬ ДО 3/8 «

1530 PLATINO -4000 ВАТТ НА 60″ X120 «ТАБЛИЦА
МОЩНОСТЬ ДО

9000 ‘ ИЗ СТАЛИ


14 ‘220 ТОНН.ГИДРАВЛИЧЕСКИЙ ПРЕСС-ТОРМОЗ YAWEI с ЧПУ

6 ’55 ТОНН. ПРЕСС-ТОРМОЗ AMADA с ЧПУ


50-ТОННЫЙ КЛЕЙНИК (SCOTCHMAN)

ВЫРЕЗКИ ¼ ”x 10” x 10 ”

¼ X 10 CINCINNATTI SHEAR W / BACK GUAGE
2

МАШИНЫ

1 ПОЛУАВТОМАТИЧЕСКАЯ ТОЧЕЧНАЯ СВАРКА 30 КВА

1 ПОЛУАВТОМАТИЧЕСКАЯ ТОЧЕЧНАЯ СВАРКА АЛЮМИНИЯ 100 КВА


4 ”X132” ПЕСОЧНЫЙ РЕМЕНЬ

9 ”X3 ”WILTON BELT GRINDER

7” X345 ”ХОД ШЛИФОВАЛЬНЫЙ ШЛИФТЕР

36” TIMESAVER MACHINE

3 CUBIC FUT VIBRATORY, BURRING, & FINISHING MACHINE

5 ”x3 ½000 911-000 911-000 911-000 BELISEAR 911-000 911-000 911-000 DYNISHEAR 180 ГРИТ 12-30RA

# 6 220-240 ГРИТ 8-14RA

# 8 ЗЕРКАЛО (НЕНАПРАВЛЕННОЕ ЗЕРНО)


ГРАНИТ 4’X4 ‘ТАБЛИЦА

26 ”ВЫСОТА

VERNIER

РАЗНОЕ.РЕЗЬБА И ШТИФТ


ДО 8000 ФУНТОВ.

No related posts.

Навигация по записям

Предыдущая запись:

Мотоблок какой лучше выбрать: Какой мотоблок лучше купить для дома, дачи и огорода

Следующая запись:

Газовая пушка для гаража какая лучше: Газовая пушка для гаража какая лучше

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Рубрики

Copyright © 2019 "DoorsStyle" Все правва защищены. Политика конфиденциальности right