Перейти к содержанию
Гардеробные системы elfa, раздвижные двери, межкомнатные перегородки
  • Главная
  • Интерьер
  • Эко
  • Стиль
  • Дизайн

Свойства каменной ваты: Утеплитель каменная вата: характеристики, достоинства, особенности выбора

19.03.2021 автор alexxlab

Содержание

  • Утеплитель каменная вата: характеристики, достоинства, особенности выбора
      • Оглавление:
      • Каменная вата: происхождение и процесс изготовления
      • Каменная вата характеристики и преимущества
      • Сфера использования утеплителя каменной ваты
      • Рекомендации по выбору каменной ваты
      • Разновидности минеральной ваты в соотношении с ее маркой
      • Обзор производителей каменной ваты
  • Свойства минеральной ваты и технология работы с ней
    • Характеристики материала
    • Технология работы с материалом
  • Свойства каменной ваты, применение для звуко- и теплоизоляции
    • Почему каменная вата приобрела популярность
    • Сферы применения каменной ваты
    • Плиты из каменной ваты Рокфон
  • Каменная (минеральная) вата — статьи на Vesta.su
    • Разновидности минеральной ваты
    • Сфера применения каменной ваты и других минеральных волокон
    • Основные преимущества каменной ваты
    • Краткий обзор производителей
    • Несколько рекомендаций по выбору
  • Свойства минваты (каменной ваты)
    • Уникальные свойства минеральной ваты
  • Paroc — Каменная вата ПРЕМИУМ класса
    • Минеральная вата PAROC (базальтовая вата)
    • Теплоизоляционные свойства минваты Paroc
    • Определение необходимой толщины изоляции
    • Противопожарные свойства минеральной ваты PAROC
    • Механическая прочность Paroc
    • Звукоизоляционные свойства Paroc
    • Одновременная эластичность и прочность минваты Paroc
    • Химическая стойкость минваты PAROC
    • Безопасность и экологичность минваты PAROC
    • Эластичные плиты и маты для каркасных конструкций
  • Теплопроводность минеральной ваты в сравнении с другими утеплителями
    • Показатели минеральной ваты
    • Теплопроводность утеплителей. Что это?
    • Теплопроводность минеральной ваты
    • Свойства минеральной ваты
  • Свойства каменной ваты
    • На этом сайте используется javascript, некоторые функции и контент не работают, если javascript отключен
    • Идея производства каменной ваты зародилась на Гавайях в начале прошлого века. Во время извержения вулкана из выброшенной в воздух лавы образуются волокна. Таким образом, каменная вата является исключительно натуральным продуктом, который сочетает в себе прочность камня и теплоизоляционные характеристики, присущие вате.Волокна каменной ваты являются основным материалом, используемым при производстве всей продукции Rockwool.
      • Пожарная безопасность
      • Теплоизоляция
      • Звукоизоляция
      • Водоотталкивающие свойства
      • Паропроницаемость
      • Стабильность размеров
  • Что делает каменную вату лучшим выбором для утепления
  • Центр CE — Библиотека Центра CE
  • Моделирование механических свойств плит из минеральной ваты для теплоизоляции внешних стен
        • 1. Введение
        • 2. Материалы и методы
        • 2.1. Материалы
        • 2.2. Вычислительные методы
          • 2.2.1. Эксперимент
          • 2.2.2. Численное моделирование
        • 2.3. Программное обеспечение Theory
        • 3. Результаты и обсуждение
        • 3.1. Проверка и анализ модели
        • 3.2. Прочность на сжатие RWB
        • 3.3. Построение теоретической модели
        • 3.4. Анализ влияния диаметра волокна
        • 3.5. Анализ влияния SVF
        • 3,6. Влияние диаметра и SVF
        • 4. Выводы
        • Доступность данных
        • Конфликт интересов
        • Благодарности
        • Дополнительные материалы
  • Каменная вата — это экологически чистый способ контроля температуры в наших домах
  • Каменная вата — Каменная вата
    • Пример — изоляция из каменной ваты
  • Роль изоляции из каменной ваты в обеспечении пассивной противопожарной защиты — International Fire Protection

Утеплитель каменная вата: характеристики, достоинства, особенности выбора

Каменная вата в качестве утеплителя имеет высокий спрос на рынке строительных материалов. Существует множество производителей каменной ваты. Предлагаем рассмотреть особенности, преимущества и рекомендации по выбору данного материала.

Оглавление:

  1. Каменная вата: происхождение и процесс изготовления
  2. Каменная вата характеристики и преимущества
  3. Сфера использования утеплителя каменной ваты
  4. Рекомендации по выбору каменной ваты
  5. Разновидности минеральной ваты в соотношении с ее маркой
  6. Обзор производителей каменной ваты

Каменная вата: происхождение и процесс изготовления

Происхождение каменной ваты связывают с природным процессом извержения вулкана. Когда расплавленная лава катится вниз, она разделяется на волокна и ветер, попадая на нее создает волокнистую структуру. Данный материал обладает высокими прочностными и эксплуатационными характеристиками.

Основным компонентом, из которого производят каменную вату выступают горные породы базальтового, метаморфичного или мергелевого происхождения. Самым важным показателем высококачественной каменной ваты является свойство кислотности, которое показывает количество кислых и основных окислов в составе ваты.

Самая высококачественная каменная вата производится из породы базальтового типа, в которую вводятся добавки карбоната, регулирующие ее кислотность.

Высокий уровень кислотности каменной ваты повышает ее водоустойчивость, а значит, делает вату более прочной и долговечной. Еще одним элементом, который входит в состав каменной ваты является связующее вещество. Его основной функцией является связывание и скрепление волокон, и придание изделию определенной формы и консистенции. В качестве связующих элементов выступает:

  • связующие на основе битума;
  • связующие синтетического происхождения;
  • комбинированные вещества, в состав которых входит несколько компонентов;
  • связующие бентонитового типа.

Самым популярным связующим элементом каменной ваты, который чаще всего применяется в процессе ее производства выступает синтетический материал в составе которого присутствуют фенолформальдегидные смолы и гидрофибизующие пластифицирующие добавки.

Материал, который стал основой для изготовления каменной ваты называют “Волосами Пеле”. Он имел вид тонкой нити, которая образовалась из вулканической горной породы. Современный этап производства каменной ваты напоминает процесс извержения вулкана. Горные породы отправляются в печь, температура в которых достигает полторы тысячи градусов Цельсия. Они расплавляются и подвергаются процессу разделения на волокна. Существует несколько способов произведения данного процесса:

  • метод дутья с помощью вентиляторов;
  • центробежный и валковый методы;
  • метод дутья и центробежности;
  • комбинация центробежного дутьевого и фильерного способа;
  • другие методы.

Когда порода разделена на волокна, далее следует процесс введения связующих веществ и придания ей формы. Этот процесс включает распыление связующего, которое вводится в ватную массу или полив массы данным веществом. Каменноватный ковер отправляется на процесс термической обработки, в ходе которого связующее вещество начинает выполнять свои функции. Содержание связующего составляет около трех процентов. Затем каменная вата разрезается в соответствии с заранее установленными размерами, упаковывается и готовится к продаже.

Каменная вата характеристики и преимущества

Первым и самым главным свойством каменной ваты, которое определяет ее использование в качестве теплоизолятора выступает ее высокая теплоизолирующая способность. Благодаря этому она хорошо справляется с процессом регуляции температуры в помещении. В зимнее время года, каменная вата не пропускает холод, а летом — жару. Данное свойство зависит от расчетного коэффициента, так как различные материалы характеризуются разным уровнем теплопроводности.

Даже при высокой температуре каменная вата не теряет своих свойств и по-прежнему выполняет свои функции. Поэтому каменная вата не поддается горению, не воспламеняется и защищает утепленные конструкции от возгорания.

Температура более тысячи градусов Цельсия не влияет на характеристики каменной ваты. Даже при такой высокой температуре она не плавится, не горит и выполняет свои функции должным образом. Хотя испарение связующего элемента происходит при температуре превышающей двести градусов. Благодаря наличию пожаробезопасных свойств, каменная вата помогает избежать пожара и разрушение конструкции здания при его возникновении. Поэтому каменная вата имеет довольно широкую сферу применения, ее используют для теплоизоляции как многоэтажных, так и одноэтажных зданий, школ, офисов, частных домов, коттеджей и т.д.

Практически все время использования, связующее вещество, если оно высококачественное, обеспечивает отсутствие усадки и постоянную форму ваты. Данное свойство помогает вате противостоять механическим воздействиям. Ведь она используется не только для теплоизоляции стен, но и полов, которые находятся под постоянным воздействием и нагрузкой. Если в качестве связующего вещества для каменной ваты использованы материалы низкого качества, она со временем теряет форму и не выполняет свои функции.

Из-за того, что волокна каменной ваты пересекаются хаотично, каменная вата является отличным звукоизолятором, который оберегает помещение от воздействия посторонних звуков и уличного шума. Межкомнатные стены, для теплоизоляции которых использована каменная вата, характеризуются наличием сниженного звукового уровня по отношению к соседним помещениям.

Еще одной функцией связующего вещества выступает устойчивость перед воздействием влаги и паронепроницаемость. Данные характеристики позволяют регулировать уровень влажности в помещении, при этом лишняя влага не впитывается в слой утеплителя, тем самым нарушая его структуру, а выводится наружу. Климат, в помещении становится комфортным и благоприятным для проживания. Сухое состояние каменной ваты приводит к тому, что в ней не образуются плесень, грибок и не разводятся другие микроорганизмы.

Каменная вата — экологичный материал, при производстве которого используются природные материалы, не оказывающие негативного влияния на окружающую среду. Использование каменной ваты позволяет обеспечить значительную экономию электроэнергии, тем самым улучшая экологию и сохраняя электричество.

Сфера использования утеплителя каменной ваты

Среди утеплителей на основе каменной ваты самой распространенной является каменная вата из базальтовых пород. Она имеет самые высокие водоотталкивающие свойства, поэтому находит применение при утеплении бассейнов, бань или саун. Она позволяет осуществить теплоизоляцию трубопроводных систем и других коммуникаций инженерного назначения.

Благодаря хаотичному распространению волокон в каменной вате, она способна выдержать самые большие нагрузки. Поэтому используется при утеплении фундаментов и полов.

В соотношении с прочностью каменная вата бывает жесткой и более эластичной. Каменная вата мягкой структуры применяется на ненагруженных участках строительных конструкций, а также при укладке колодцев и вентилируемых фасадов, которые имеют небольшую скорость потока воздуха и средний вентиляционный зазор.

Применение каменной ваты полужесткого типа связано с системами вентилируемого фасада, которые имеют неограниченный воздушный поток. Она подходит для многоэтажных конструкций. Такой тип ваты хорошо устанавливать в воздуховодных конструкциях, там она обеспечивает их тепло-, звукоизоляцию и пожаробезопасность.

Каменная вата сегментного, цилиндрического или полуцилиндрического типа используется при теплоизоляции трубопроводных систем.

Жесткая базальтовая вата подходящий вариант для конструкций, которые подвергаются большой нагрузке.

Покрытие каменной ваты бывает:

  • стекловолокнистым;
  • фольгированным;
  • проволочным.

Изучая о каменной вате отзывы, предлагаем рассмотреть основные отрасли ее использования:

1. Изоляция конструкций строительного назначения — каменная вата позволяет соорудить термическую, звуковую и пожаробезопасную изоляцию в зданиях практически любого назначения. Каменная вата улучшает теплоизоляционные качества стен, фасадов, потолков, полов, дымоходов и перекрытий.

2. При выполнении технической изоляции использование каменной ваты позволяет оборудовать системы вентиляции, кондиционирования или удаления дыма.

3. При оборудовании систем огнезащитного назначения каменная вата повышает огнеустойчивость строительных элементов, таких как перекрытия или металлические конструкции. Использование каменной ваты позволяет повысить уровень пожарной безопасности всего здания.

4. В промышленности судостроительного назначения каменная вата обеспечивает теплоизоляцию суден и их отдельных частей.

Рекомендации по выбору каменной ваты

Перед тем как каменную вату купить, следует четко определить ее функциональную нагрузку и объем площади, которую нужно теплоизолировать.

На утеплитель каменную вату цена зависит от таких факторов:

  • производитель;
  • плотность материала;
  • тип связующего вещества, используемый при производстве;
  • тип породы, из которого изготовлена каменная вата;
  • количество материала;
  • наличие дополнительного слоя покрытия.

Каменная вата для фасада должна быть прочной и плотной, так как данная часть здания подвергается воздействию окружающей среды.

Раньше качество минеральной ваты определяли исходя из ее плотности, но это утверждение сейчас не актуально. Так как современные производители каменной ваты разрабатывают материал, который несмотря на небольшую плотность, хорошо противостоит перед механическими воздействиями.

Поэтому, выбирая каменную вату, обращайте внимание на соотношение характеристик прочности к разрыву или к сжатию к эксплуатационным особенностям использования утеплителя.

При выборе материала, внимательно изучите рекомендации производителя по ее применению. В большинстве инструкций указана сфера использования ваты. Каменная вата является открытопористым утеплителем, который требует наличия дополнительного слоя, защищающего ее от влияния влаги и воды.

Обратите внимание на марку производителя, наиболее качественной считается каменная вата “Роквул”, “Урса”, “Технониколь”. Если стоит выбор между немецким производителем и другой компанией, лучше отдать предпочтение первому, так как каменная вата, изготовленная именно в Германии, имеет наивысшее качество, из-за того, что органы сертификации данной страны самые придирчивые к данной продукции.

Учтите, что от плотности материала зависит ее стоимость, поэтому не следует выбирать слишком плотную вату, там где будет достаточно материала средней или малой плотности.

Не следует выбирать каменную вату, исходя из ее низкой стоимости, лучше купить продукцию подороже. Так как дешевый материал через несколько лет потеряет свои свойства, а переделывать фасад здания или пол, намного дороже, чем купить каменную вату более высокой стоимости.

Обратите внимание на расположение волокон, бывают три вида минеральной ваты, определяющиеся по данному критерию:

  • вертикальное,
  • горизонтальное,
  • хаотичное расположение волокон.

Первый и второй вариант повышают устойчивость минеральной ваты перед механическими воздействиями, а третий — положительно влияет на ее теплоизоляционные и звукоизоляционные свойства.

Разновидности минеральной ваты в соотношении с ее маркой

В соотношении с плотностью каменную вату разделяют на:

1. Марку П — 75 — используют для теплоизоляции ненагруженных горизонтальных поверхностей, например чердачных помещений, иногда кровель. Данный материал уместен при утеплении нефте-, трубо- и газопроводов.

2. Марку П — 125 — используют при теплоизоляции ненагруженных площадей, расположенных как вертикально, так и горизонтально. С помощью такой ваты строят внутренние перегородки, утепляют полы и потолки. Они подходят для установки в трехслойную кирпичную, газобетонную, керамзитобетонную систему.

3. Каменная вата ПЖ — 175 — подходит для теплоизоляции стен, основой которых выступает металлический профилированный лист или железобетон в котором отсутствует бетонная стяжка.

4. ППЖ — 200 — плиты повышенной жесткости, которые повышают огнеустойчивость сооружений инженерного и строительного назначения.

В соотношении с каменной ваты размерами, они зависят от производителя. Возможен вариант заказа индивидуальных размеров рулона или плит каменной ваты.

Обзор производителей каменной ваты

1. “Роквул” (Дания) — каменная вата, которая отличается высокой популярностью и имеет большое количество преимуществ. Особенности каменной ваты “Роквул”:

  • хаотичное расположение волокон;
  • высокая пожаробезопасность и огнеустойчивость;
  • влагоустойчивость;
  • звукоизоляция;
  • обеспечение экономии электричества;
  • большой ассортимент продукции;
  • широкий спектр применения;
  • использование каменной ваты “Роквул” обеспечивает помещение здоровым и комфортным микроклиматом;
  • высокий уровень прочности и устойчивости перед механическими воздействиями;
  • длительность эксплуатации составляет более пятидесяти лет.

2. “Технониколь” — производит каменную вату на основе базальта. Особенности данной продукции:

  • высокие теплосберегающие характеристики;
  • пожаробезопастность;
  • хорошее шумопоглащение;
  • отсутствие усадки на протяжении длительного срока использования;
  • применение каменной ваты “Технониколь” позволяет снизить затраты на сооружение дополнительного слоя из кирпича или дерева;
  • небольшой вес продукции обеспечивает удобство в работе и ее легкую транспортировку.

3. Каменная вата “Кнауф” — отличается высокой устойчивостью перед влагой, химическими и биологическими организмами. Каменная вата выпускается в форме цилиндров, плит, рулонов, рулонных ламелей, фасадных ламелей. Большой ассортимент продукции открывает перед покупателем выбор того вида каменной ваты, который необходим при утеплении определенного участка. Существует вид каменной ваты, который имеет прошивку с помощью оцинкованной сетки. В качестве связующего вещества стандартных утеплительных плит используется синтетическая смола. Материал в виде рулонных ламелей, состоит из полос, которые соединены между собой слоем алюминиевой фольги.

4. Каменная вата “Урса” — отличается легкостью и эластичностью. Материал легко транспортируется, благодаря наличию специальной упаковки. Отличается хорошими теплоизоляционными характеристиками. Существуют варианты ваты, которая не содержит формальдегидов, а поэтому является абсолютно безопасной и рекомендуется для применения в школах, детских садах или заведениях медицинского назначения.

Видео каменная вата:

 

Свойства минеральной ваты и технология работы с ней

Ассортимент теплоизоляционных материалов на строительном рынке довольно обширен. Тем не менее, среди них есть бесспорный лидер продаж – это минеральная вата. Популярность этого теплоизоляционного материала вполне оправдана. Покупателей привлекают неоспоримые преимущества минеральной ваты на фоне невысокой стоимости.

Характеристики материала

Особого внимания заслуживают положительные качества минеральной ваты:

  1. Доступная цена. Минеральная вата, в отличие от других материалов, имеет наиболее оптимальное соотношение цена/качество.
  2. Особый состав материала позволяет ему «дышать». То есть, он свободно пропускает воздух и обеспечивает помещения дополнительной вентиляцией. Благодаря такому воздухообмену в комнатах сохраняется оптимальная влажность.
  3. Экологическая безопасность. В производстве применяют безопасные для человека ингредиенты. Благодаря чему материал не обладает запахом, не способствует аллергическим проявлениям, не выделяет токсинов.
  4. Высокая огнестойкость. В процессе изготовления материала его делают устойчивым к возгоранию. Он не поддерживает горение. Такая характеристика особенно актуальна для деревянных строений.
  5. Высокая устойчивость к влаге. Особая структура минеральной ваты способствует циркуляции пара и воздуха, но не пропускает воду. Это обеспечивает регуляцию влажности, тепла и поддержание микроклимата в помещениях.
  6. Дополнительная звукоизоляция. Минеральная вата благодаря своему составу в обычном состоянии насыщена воздухом. Структура ее позволяет сдерживать шумы и не допускать их в помещения.

Такие преимущества минеральной ваты обеспечивают ей популярность среди покупателей. Что касается недостатков, то связаны они с особенностями монтажа и эксплуатации. Минеральная вата негативно реагирует на перепады температур. Кроме того, если в процессе монтажа материал будет неправильно зафиксирован, он может деформироваться.

Технология работы с материалом

  • Минеральную вату применяют для теплоизоляции сооружений, а также различных поверхностей с целью недопущения потери тепла. Рассмотрим, как утепляют стены зданий. Первым делом подготавливают поверхности. Для этого их очищают от мусора и загрязнений. На стенах закрепляют обрешетку, чаще всего деревянную, толщина которой должна соответствовать толщине минваты. После этого приступают к приклеиванию материала. Для этого на плиты минеральной ваты наносят специальный клеящий состав.
  • Прикладывают минвату к поверхности стены и прижимают. Для более надежной фиксации ее закрепляют дюбелями. Это нужно делать обязательно. Если не закрепить материал дюбелями, в процессе эксплуатации под собственным весом плиты материала провиснут и сместятся со своего места. Целостность теплоизоляционного слоя нарушится, что окажет негативное влияние на его характеристики. Подобным образом монтируют минеральную вату на потолок.

Что делать с еще одним недостатком материала – реагированию на перепады температур? Минеральная вата при повышении температуры увеличивается в объемах, а при понижении – уменьшается. Вследствие чего нарушается целостность теплоизоляционного слоя. В нем появляются щели, на самом фасаде образуются трещины. Этого можно избежать, если использовать армирующий слой. Для этого поверх теплоизоляционного материала монтируют специальную сетку. Она не дает минвате деформироваться и смещаться, а надежно фиксирует ее. Перед монтажом армирующей сетки на поверхность теплоизоляционного материала наносится клеящий состав. Делается это с таким расчетом, чтобы «утопить» в нем сетку. Поверх ее снова наносится клей.

Наиболее важны преимущества минеральной ваты, ведь ее недостатки легко компенсировать качественным монтажом. После монтажа утепляющего материала приступают к финишной отделке. С этой целью используют специальные краски и штукатурки. Кроме внешних данных, при выборе финишной отделки обращают внимание на ее эксплуатационные характеристики. Качественные материалы способны защитить поверхности от проникновения влаги, образования грибков и т.д.

Заказать недорогой утеплитель от производителя. Получить бесплатную консультацию 8-800-555-66-53

Свойства каменной ваты, применение для звуко- и теплоизоляции

Одним из самых востребованных строительных материалов в настоящее время стала каменная вата, которая часто используется для утепления потолка и стен. Её изготавливают из природного вулканического камня, расплавляя базальт в высокотемпературных печах и вытягивая из расплава тончайшие волокна. Из полученных нитей каменной ваты формируют жёсткие плиты, используя смолу в качестве клея, скрепляющего базальтовые волокна между собой.

Почему каменная вата приобрела популярность

Сегодня плиты из каменной базальтовой ваты широко применяются в строительстве зданий разного назначения, инфраструктурных и технологических сооружений. Причиной популярности плит из каменной ваты служат уникальные свойства материала, в числе которых следует назвать:

  • теплоизолирующую способность: благодаря воздушным промежуткам между волокнами материал практически не проводит тепло;
  • шумопоглощение: к примеру, плиты из каменной ваты Rockwool Акустик ультратонкий снижают уровень проникающего шума на 57 дБ;
  • пожаробезопасность: большинство разновидностей плит из негорючей каменной ваты выдерживают нагрев до 1000°С, не разрушаясь и не теряя своих свойств в течение часа;
  • влагостойкость: плиты на основе каменной ваты не впитывают влагу, а благодаря особому гидрофобному покрытию волокна отталкивают капли воды;
  • долговечность: срок службы плит из каменной ваты Rockwool составляет 40-50 лет при условии укладки согласно технологическим требованиям.

Согласно ГОСТ, плиты из каменной ваты не выделяют вредных испарений и не загрязняют окружающую среду, так как изготавливаются из природного базальта.

Сферы применения каменной ваты

Наиболее часто плиты из каменной ваты покупают для утепления помещений, так как этот материал сочетает чрезвычайно низкую теплопроводность с поразительной долговечностью. Благодаря довольно высокой жёсткости, ими утепляют стены и нагруженные конструкции – полы, перекрытия, фундаменты.

 Экологичность материала существенно расширяет сферу его использования не только для наружных работ, но и внутри помещений, в том числе в жилых, рабочих и учебных комнатах, в больничных кабинетах и палатах. Высокая термическая устойчивость позволяет применять плиты каменной ваты Роквул для термоизоляции печей, дымоходов, теплотрасс, отопительных котлов, технологических резервуаров. Отдельно следует сказать о применении материала для защиты от наружных и внутренних (реверберационных) шумов.

Плиты из каменной ваты Рокфон

Существует обширная линейка шумопоглощающих плит из каменной ваты, цена которых несколько выше обычной теплоизолирующей продукции из-за декоративных свойств наружной поверхности панелей. Это продукция, выпускаемая предприятием Рокфон (Rockfon) специально для создания в помещениях идеальной акустической обстановки.

Шумозащитные теплоизоляционные плиты из каменной ваты, а также аналогичные стеновые панели, представляют собой превосходный отделочный материал, который обладает всеми ДОСТОИНСТВАМИ КАМЕННОЙ ВАТЫ, но вдобавок к этому:

  • не требует дополнительной наружной отделки, так как его лицевая сторона имеет эстетически привлекательный вид;
  • благодаря наружной облицовке гладким и прочным стеклохолстом обладает повышенной прочностью на изгиб;
  • разработан специально для улучшения акустики помещений;
  • предусматривает возможность быстрого и несложного монтажа на стены и потолок.

В тех случаях, когда перед строителями стоит задача не только утеплить дом или отдельные помещения, но и обеспечить акустический комфорт людям, которые будут в них жить и работать, наиболее эффективным решением становятся подвесные потолки и стеновые панели из каменной ваты Rockfon. Благодаря стандартным размерам каменной ваты в плитах они легко монтируются в подвесную систему и успешно эксплуатируются в течение многих лет, защищая людей от шумового загрязнения и дискомфортного эха.

Каменная (минеральная) вата — статьи на Vesta.su

Для изоляции тепла и звука в зданиях используются различные материалы. Одним из доступных и широко распространенных еще в советские времена является минеральная вата. Что мы знаем о ней?

Теплоизоляторы по классу минват регулирует ГОСТ 52953-2008. В соответствии с этим ГОСТом к данной группе материалов относятся волокна, производимые из стекла, шлаков, определенных горных пород. Их основные различия:

  • теплопроводность;
  • негигроскопичность;
  • виброустойчивость;
  • огнестойкость.

Свойства определяются разной длиной и диаметром волокна. Каменная вата предназначена для использования в тех случаях, когда ключевыми параметрами должны стать долговечность и надежность, стеклянное волокно выбирают для изоляции там, где важна устойчивость к высоким температурам и вибрационным нагрузкам. Качество теплоизоляторов приблизительно сопоставимо.

Разновидности минеральной ваты

  • Из горных пород.
  • Из шлаков.
  • Из стекловолокна.

Стекловолокно. Диаметр нити от 5 до 15 микрон, длина нити 15-50 миллиметров. Данные показатели обеспечивают упругость и прочность. Может использоваться при температуре от +500 до -60 С. При этом оптимальной является температура нагрева в пределах +450 С.

Для производства используются остатки стекольной промышленности. Стекловата имеет высокую химическую стойкость, повышенную упругость и прочность, а также устойчивость к вибрационным нагрузкам.

При работе с материалом требуется соблюдать определенную технику безопасности. Тонкие стеклянные нити достаточно хрупкие, поэтому при укладке теплоизолятора специалисты используют защитные одноразовые костюмы, плотные перчатки и респираторы: волокна, ломаясь, могут впиваться в кожу, попадать в глаза и дыхательные ходы.

Шлаковата. Диаметр нити составляет 4-12 микрон, длина ее 16 миллиметров. Допустима температура нагрева не выше +300 С, после этого нити склеиваются, вата из шлаковолокна утрачивает свои теплоизоляционные свойства. Для доменных шлаков характерна высокая остаточная кислотность, поэтому их не используют в контакте с поверхностями из металлов. Из-за высокой гигроскопичности шлаковата также не предназначена для утепления фасадных конструкций и водопроводных труб из пластика или металла.

Производится из расплава доменных шлаков. Материал достаточно хрупок, поэтому работать с ним голыми руками не рекомендуется.

Каменная вата. Диаметр волокна 4-12 микрон, длина 16 миллиметров. Крайняя температура нагрева +600 С. Характеристика волокон схожа с параметрами шлаковаты, однако волокна каменной ваты не колются, поэтому работать с ней безопасно.

Производится из изверженных горных пород, как правило, габбро-базальтовых. Именно волокна из базальта обладают наилучшими характеристиками. Они не содержат доменных шлаков, шихты, сторонних компонентов, например, глины, известняка, доломита. Не используется соединяющий компонент на основе формальдегидной смолы, который может выделять фенол. Возможен нагрев до +1000 и охлаждение до -190° С без утраты теплоизоляционных свойств. Каменная вата на основе базальта поставляется в виде матов, рулонов, листового полотна и даже россыпью. Материал при всех вышеперечисленных особенностях не обладает горючестью: при нагреве выше предельной температуры волокна плавятся и спекаются, не воспламеняясь. Существует градация по степени прочности. Материал мягкой и более рыхлой структуры используется для утепления ненагруженных конструкций, в том числе вентфасадов зданий, колодцев, в которых предполагается небольшая скорость воздушных потоков. Соответственно, маты с жесткой структурой – оптимальный выбор для конструкций, несущих существенную нагрузку. Для систем трубопровода используется материал сегментной, цилиндрической и полуцилиндрической обработки.

Сфера применения каменной ваты и других минеральных волокон

  • Устройство теплоизоляции частных жилых зданий (стены, полы, межкомнатные перегородки, скатные крыши, камины).
  • Оборудование звукоизолирующих оснований (полы, плиты перекрытия, перегородки).
  • Техническая и термическая изоляция камина.
  • Термическая изоляция банных комплексов и саун.
  • Наружное утепление фасадов офисных и административных зданий.

Каменная вата – открытопористый утеплитель, поэтому предполагается ее эксплуатация в сочетании с дополнительным слоем, который обеспечит эффективную защиту от влаги. В этом качестве может выступать фольга, полиэтилен и аналогичные по свойствам материалы.

Основные преимущества каменной ваты

  • Устойчивость к нагреву.
  • Без изменения характеристик и геометрии может использоваться при температуре окружающей среды до +600 С, если используются нити, произведенные из базальта– при температуре до +1000 С. Благодаря данной характеристике каменная вата препятствует распространению пламени в случае пожара, используется для изоляции помещений для хранения огнеопасных изделий, а также для защиты помещений с продолжительным воздействием высоких температур. При горении не выделяет дым или жар, не распространяет искры.
  • Биологическая и химическая устойчивость.
  • Материал стоек к различным агрессивным веществам, не подвержен воздействию грибков и порче грызунами.
  • Негигроскопичность.
  • Каменная вата не адсорбирует влагу, степень поглощения держится на уровне 0,5%. Для того, чтобы свести риск проникновения влаги практически к нулю, волокно производится и храниться в сухих помещениях.
  • Низкая теплопроводность.
  • Характеризуется высоким термическим сопротивлением.
  • Хорошие звукоизоляционные свойства.
  • Простота монтажа.
  • Материал достаточно легко режется ножом или ножовкой в зависимости от плотности, ему можно придать необходимую форму. На утепляемой поверхности закрепляется различными способами.
  • Экологичность.
  • За счет отсутствия в составе формальдегидной молы безопасен для окружающей среды и здоровья человека.
  • Долговечность.
  • Расчетный срок эксплуатации материала составляет 70 лет при соблюдении рекомендаций производителя и установленных правил эксплуатации. Благодаря расположению нитей в вате она не только имеет высокую жесткость и устойчивость к нагрузкам – геометрия не изменяется даже под направленным механическом воздействии.

Краткий обзор производителей

Признанными лидерами на рынке минваты являются следующие бренды:

  • ROCKWOOL. Производитель из Дании. Основой для изготовления плит и матов является каменная вата. В ассортимент включены как легкие, так и плиты повышенной жесткости с синтетическим связующим компонентом. Материал характеризуется низкой теплопроводностью, благодаря чему выступает эффективным теплоизолирующим материалом. Каменная вата изготовлена с хаотичным расположением нити, что позволяет использовать ее в конструкциях, выдерживающих существенные нагрузки.
  • ISOVER. Материал представлен несколькими отдельными линейками, отличие которых состоит в отдельных характеристиках и сферах применениях. Отельного упоминания достойна серия минваты «Каркас», которая разработана специально для использования при строительных работах. По соотношению цена/качество – один из лучших вариантов на рынке.
  • URSA. В ассортименте представлены плиты и маты из стеклянного волокна. Изделия отличаются не только ценой, но и целевым назначением, например, представлены линейки специально для утепления скатных крыш и других конструкций. Благодаря наличию специальной упаковки легко транспортируется.

Несколько рекомендаций по выбору

  • Проверьте, чтобы волокно было изготовлено по государственным стандартам качества. Производство плиты из минваты регулирует ГОСТ 9573-96, матов ГОСТ 21880-94, плит повышенной жесткости — ГОСТ 22950-95.
  • Уточните направление волокон. Плиты с вертикальными волокнами оптимально подойдут для изоляции здания от холода и звуков, материал с волокнами разнонаправленного расположения более прочен и способен выдержать огромные динамические нагрузки.
  • Уточните размер плиты или мата. Производители утверждают, что толщина составляет 5 сантиметров, однако лучше всего убедиться в этом на практике.
  • Цена материала напрямую зависит от плотности переплетения нитей. Закономерно, ведь чем плотнее материал, тем больше сырья – доменных шлаков, горных пород, отходов стеклопроизводства – было использовано при его изготовлении.
  • Не гонитесь за дешевизной. Каменная вата при более высокой стоимости обладает более совершенными характеристиками и куда более безопасна при монтаже и эксплуатации.

Свойства минваты (каменной ваты)

Минеральная вата — это материал, отличающийся волокнистой структурой, который изготавливается из расплавов горных пород или доменных шлаков и их смесей. Ведущие мировые производители минераловатных утеплителей, которые особое внимание уделяют качеству и долговечности своей продукции, в качестве сырья используют только горные породы.

Минвата, изготовленная на основе доменных шлаков, уступает каменной вате в долговечности, особенно в условиях повышенной влажности, резких перепадов температур и под воздействием нагрузок и деформаций. Именно поэтому шлаковую вату рекомендуют использовать в дачном строительстве или при возведении временных построек.

Уникальные свойства минеральной ваты

В современном строительстве минеральная вата пользуется огромной популярностью. Причиной такого активного использования этого теплоизоляционного материала стала не только его доступная стоимость, но и уникальные эксплуатационные свойства.

Огнестойкость. Благодаря использованию при производстве минваты негорючих расплавов горных пород, даже под воздействием высоких температур этот теплоизоляционный материал сохраняет все свои свойства и не деформируется. Каменная вата не только не поддерживает горение, но и активно препятствует распространению огня, из-за чего ее достаточно часто используют для утепления помещений и строений, в которых хранятся огнеопасные вещества. Также минвату активно используют в условиях ее длительного контакта с высокими температурами. Правда при этом необходимо избегать механического воздействия на утеплитель, поскольку каменные волокна и связующие вещества, используемые при производстве минваты, разрушаются при разной температуре.

  • Теплоизоляция. Этот материал отличается высокими показателями термического сопротивления. Минеральная вата толщиной 100 мм и плотностью 100 кг/м3 может заменить 255 мм деревянной стены, 2000  мм кирпичной стены, и 1170 мм стены, выложенной из пустотного керамического кирпича. Благодаря этому можно не только сэкономить на отоплении дома, но и увеличить жилое пространство.

  • Химическая и биологическая стойкость. Каменная вата обладает стойкостью к различным агрессивным веществам (кислотам, растворителям и .д.), грибкам и воздействию грызунов.

  • Гидрофобность. Несмотря на волокнистую структуру, минеральная вата обладает низкой гигроскопичностью: уровень поглощения воды составляет всего около 0,5%. Такого показателя нет ни у одного другого теплоизоляционного материала.

  • Высокая прочность. Этот показатель во многом зависит от количества вертикальных волокон в минераловатном утеплителе. Чем больше  волокон, тем прочнее материал, и меньшей плотности утеплитель  использовать. Необходимо также отметить, что качественная каменная вата является химически нейтральной средой, поэтому не вызывает коррозию металлов, с которыми она соприкасается.

  • Высокая звукоизоляция. Волокнистая структура каменной ватой надежно преграждает путь звуковым волнам, что гарантирует обеспечение тишины  помещениях.

  • Экологичность. Минеральная вата полностью соответствует всем стандартам качества и действующим санитарно-гигиеническим нормам, поэтому относится к безопасным для здоровья человека материалам.

  • Долговечность. При условии правильной эксплуатации средний срок службы каменной ваты составляет не менее 70 лет, что стало возможным благодаря использованию базальтовых горных пород при производстве утеплителя.

  • Паропроницаемость. Благодаря волокнистой структуре минеральная вата не препятствует удалению водяных паров и конденсата из помещения. Это свойство минваты позволяет регулировать уровень влажности и способствует созданию благоприятного микроклимата в помещении.

  • Легкость монтажа. Каменная вата любой плотности и вида (рулон, плита или мат) легко режется, благодаря чему ей можно придать нужную форму,  разместить на поверхности любой конфигурации.

Paroc — Каменная вата ПРЕМИУМ класса

Минеральная вата PAROC (базальтовая вата)

Компания «Баурекс» представляем вашему вниманию лучшую на сегодняшний день в Росcии минеральную вату — утеплитель paroc.

Базальтовая вата PAROC относится к группе минераловатных изделий. Минеральная вата – это общее название для всех неорганических волокнистых материалов.

По роду сырья они делятся на три типа:

шлаковата, стекловата и вата из базитных горных пород, которую иногда называют «базальтовая вата». К последней категории относится и каменная вата PAROC, которая благодаря своей основе обладает рядом уникальных свойств, позволяющих применять ее в различных строительных конструкциях и системах.

Теплоизоляционные свойства минваты Paroc

Каменная вата PAROC состоит из чрезвычайно тонких (0,04 мкм), хаотично переплетенных волокон, между которыми находится воздух. Фактически в материалах PAROC содержится много воздуха и мало камня, что обеспечивает их незначительную плотность (30 — 240 кг/м3). Это, в свою очередь, обусловливает их низкую теплопроводность λот 0,032 до 0,038 Вт/мK в сухом состоянии при средней температуре 10 оC. Чем меньше коэффициент теплопроводности , тем лучше теплоизоляционные свойства материала.

На диаграмме представлены толщины различных строительных материалов (мм) , при которых они имеют одинаковые теплоизолирующие свойства в сравнении со слоем каменной ваты PAROC толщиной 100 мм Различают коэффициенты теплопроводности в сухом состоянии и при различных режимах эксплуатации. Влажность любого материала влияет на коэффициент его теплопроводности. С повышением влажности возрастает коэффициент теплопроводности, что объясняется тем, что вода имеет теплопроводность в 25 раз большую, чем воздух. Более того, влага увеличивает площадь соприкосновения между частицами материала (в частности, между волокнами ваты). Таким образом, при выборе утеплителя и оценке его теплоизолирующих свойств обязательно необходимо учитывать гидрофобные свойства материала.

Определение необходимой толщины изоляции

Выбор параметров теплоизоляции здания зависит от требований соответствующих строительных норм и правил. Принципиально подбор толщины теплоизоляции зависит от необходимости создать требуемое термическое сопротивление ограждения. Требуемое сопротивление теплопередаче наружных ограждающих конструкций определяется исходя из условий энергосбережения в

соответствии с требованиями СНиП II-3- 79 «Строительная теплотехника» для различных районов России в зависимости от климатических зон. Толщина тепловой изоляции в конструкции зависит от коэффициента теплопроводности предполагаемого к применению материала, а также от его расположения в конструкции и прочих материалов, используемых в данной конструкции. Термическое сопротивление структурного слоя рассчитывается путем деления в метрах на его теплопроводность. В общем толщины слоя материала случае сумма термических сопротивлений слоев материалов, входящих в конструкцию, и величин, обратных коэффициентам теплоотдачи внутренней и наружной поверхностей данной конструкции, составляют общее термическое сопротивление конструкции R, M2К/Вт. В соответствии требованиями СНиП при определении термическое сопротивление конструкции R применяются так называемые «расчетные» коэффициенты теплопроводности Лямбда А и Лямбда В исходя из условий влажности А и Б рассматриваемой климатической зоны. Все материалы PAROC относятся к группе эффективных утеплителей и имеют технические свидетельства Госстроя России с соответствующими показателями для проведения корректных теплотехнических расчетов в соответствии с действующими в России нормами и правилами.

Рекомендуемая толщина минераловатной теплоизоляции для центрального региона России по данным компании «Баурекс» составляет 200 мм.

Противопожарные свойства минеральной ваты PAROC

Температура спекания волокон для данных материалов составляет 1000°С, что обусловливает высокие значения их максимальных рабочих

температур (+750°С). При испытаниях по стандарту ISO 834 (см. Стандартную кривую пожара) температура на стенде достигает 700°С в течение 15 минут, 900°С — в течение получаса, 1100°С — в течение 3-х часов с момента начала испытания. Не все виды продукции, классифицированные, rак негорючие, могут продемонстрировать такие противопожарные свойства, как каменная вата PAROC.

В соответствии с различными стандартами (ISO 1182, DIN 4102, ГОСТ 3044-94), изделия PAROC из каменной ваты классифицированы как несгораемые. Что касается материалов, имеющих поверхностную облицовку, то их огнестойкость в основном зависит от противопожарных свойств покрытия, в то время как основа из каменной ваты является несгораемой.

Механическая прочность Paroc

Толщина и ширина мягких (р = 30 кг/м3) теплоизоляционных материалов PAROC подобрана из расчета наиболее распространенных вариантов каркасных конструкций, что существенно облегчает монтаж и позволяет добиться плотного контакта между утеплителем и элементами каркаса. Эластичность, гибкость и легкий вес теплоизоляционных материалов PAROC делает их установку легкой и удобной.

При необходимости, мягкие изделия РAROC легко режутся обычным ножом, а более плотные (р = 100 кг/ м3 и более) — при помощи ножовки.

Звукоизоляционные свойства Paroc

Каменная вата PAROC может быть использована в конструкциях полов, стен, внутренних перегородок для снижения уровня шума. Это происходит благодаря эффекту плавающего пола, когда изоляция устанавливается между несущей конструкцией перекрытия и внешним слоем. Наилучшие звукоизоляционные показатели достигаются при применении дополнительного воздушного зазора между изоляцией и внешним отделочным слоем.

Требования по звукоизоляции к жилым зданиям определяют такие параметры, как:

– минимальной индекс изоляции воздушного шума;

– максимальный индекс ударного шума;

– максимальный индекс шума от оборудования;

– максимальное время реверберации для разных помещений;

– максимальный индекс внешнего и внутреннего шума от уличного транспорта.

Вследствие своей пористой волокнистой структуры и достаточной плотности каменная вата Paroc служит отличной изоляцией от шума, проникающего через стены и крышу, а также от внутренних шумов через внутренние стены, межэтажные перекрытия. Каменная вата PAROC может быть использована в конструкциях полов, стен, внутренних перегородок для снижения уровня шума. Звукоизоляционные плиты Paroc устанавливаются в конструкциях полов для уменьшения ударного шума и в стеновых конструкциях для уменьшения воздушного шума.

«Плавающие полы» во многих случаях являются лучшим решением, чем применение мягкого покрытия на полах только потому, что в них снижается передача звуков от торцевых поверхностей

конструкций.

Одновременная эластичность и прочность минваты Paroc

Каменная вата Paroc эффективно используется в качестве эластичного слоя для «плавающих полов». Материал является настолько прочным, что он выдерживает нагрузку со стороны верхнего слоя пола. В то же время этот материал настолько эластичен, что обеспечит значительное уменьшение вибраций между слоями в полах. Важным свойством материала является его динамическая упругость, МН/м3, выражаемая динамическим модулем упругости Ед, приращенным по толщине применяемого

Гидрофобные свойства PAROC

Изоляционные материалы имеют наибольшую эффективность в сухом состоянии. При впитывании даже незначительного количества влаги наблюдается ухудшение теплотехнических свойств изоляционных материалов. В материалах ограждающих конструкций влага образуется в основном вследствие процессов сорбции, капиллярного увлажнения и конденсации водяных паров. Так как практически невозможно создать и гарантировать абсолютно сухое состояние конструкции, то особенно важно отношение к влаге предполагаемого к применению материала. Волокно каменной ваты PAROC само по

своей природе обладает водоотталкивающими свойствами, т.е. негигроскопично. Более того, при производстве каменной ваты PAROC добавляется небольшой процент водоотталкивающих присадок, что позволяет расширить границы применения материала и производить его установку в различных климатических условиях.

Содержание влаги в изделиях PAROC при нормальных условиях эксплуатации составляет менее 0,5% от единицы веса. Каменная вата впитывает очень незначительное количество влаги, что может произойти только под воздействием водяного давления. При его прекращении влага из ваты испаряется. По сравнению со многими другими строительными материалами каменная вата PAROC обладает высокой паропроницаемостью. Хорошо пропуская водяной пар, каменная вата PAROC практически всегда остается сухой, что, в свою очередь, влияет на здоровый микроклимат в здании, с одной стороны, и долговечность строительной конструкции, с другой стороны.

Влажностные характеристики теплоизоляционных материалов PAROC приведены в таблице.

Каменная вата PAROC негигроскопична. При полном погружении в воду на 2 часа объем воды, абсорбированный плитой PAROC, составляет менее 1% по объему исследуемого образца, при долгосрочном погружении на 2 дня, менее 3%. Как уже говорилось выше, влага в материалах ограждающих конструкций образуется в результате сорбции и конденсации водяных паров. Влияние конденсации водяных паров в ограждении можно уменьшить при правильном конструктивном решении, соответствующем влажностному режиму помещения.

Это предусматривается при расчете ограждения на сопротивление паропроницанию. На практике это означает применение пароизоляционного барьера с теплой стороны, т.е. создание герметичной конструкции, исключающей попадание конденсата в массив ограждения. Таким образом, при правильном конструктивном решении и качественном его исполнении, фактором, определяющим влажность материалов ограждающей конструкции, будет процесс сорбции. Сорбционная влажность материалов повышается как при повышении относительной влажности воздуха, так и при снижении его температуры. Как мы уже подчеркивали, для материалов PAROC значения сорбционного увлажнения чрезвычайно низки. Более того, в силу своей высокой гидрофобности каменная вата PAROC может использоваться и в конструкциях с возможным капиллярным подсосом влаги.

Компания Paroc рекомендует применение пароизоляции в большинстве теплоизоляционных решений. Но в конструкции, имеющей непосредственно контакт с землей, например, стены подвала, использование пароизоляции может оказаться не столь эффективным. Поэтому, необходимость применения того или иного материала в строительных конструкциях рассматриваются отдельно.

Химическая стойкость минваты PAROC

Каменная вата PAROC обладает высокой стойкостью к органическим веществам. Ни растворители, ни щелочные, ни умеренно кислые среды не оказывают на нее воздействия. В условиях нормальной влажности каменная вата не вызывает коррозии, но и не может ее предотвратить. Все металлические конструкции, выполненные с применением каменной ваты, должны быть защищены от коррозии.

Каменная вата PAROC не вызывает коррозии на соприкасающихся поверхностях благодаря тому, что вытяжка из каменной ваты имеет нейтральную среду. Это чрезвычайно важно для материалов, применяемых при изоляции трубопроводов и резервуаров, в системах вентилируемых фасадов и в каркасных конструкциях.

Безопасность и экологичность минваты PAROC

Базальтовая вата PAROC безопасна при установке и в эксплуатации. При долговременных независимых испытаниях, каменная вата не вызывала риска для здоровья людей. Эти данные основываются на исследованиях, проводимых Всемирной Организацией Здоровья (WHO). Изделия PAROC могут быть использованы без ограничений благодаря своим гигиеническим характеристикам, прошедшим сертификацию в системе Министерства здравоохранения РФ.

Помимо экономии энергозатрат, тщательная теплоизоляция зданий способствует охране окружающей среды, так как при этом снижается суммарный выброс в атмосферу продуктов сгорания различных видов топлива.

Проблема охраны окружающей среды находится в центре внимания при производстве теплоизоляционных изделий PAROC. Концерн постоянно проводит исследования, направленные на повышение экологической безопасности технологического процесса.

Механическая прочность Paroc

Изделия PAROC включают в себя как эластичные плиты и маты (рулонный материал), применяемые в каркасных конструкциях, так и жесткие и полу жесткие плиты, используемые в тепло изоляционных системах, где изоляция находится под воздействием деформационных нагрузок.

В зависимости от целей применения изделия PAROC могут выдерживать нагрузки на сжатие от 5 до 80 кПа при 10% деформации. Прочность на сжатие является одним из чрезвычайно важных показателей свойств теплоизоляционных материалов. В частности, эти показатели нормируются для кровельных и фасадных теплоизоляционных плит. Различают показатели, связанные с механической прочностью, в зависимости от места приложения нагрузки и направления действия. Эти показатели нормируются для различных конструкций и систем утепления, например: фасадные штукатурные

системы – прочность на сжатие и на отрыв слоев, трехслойные металлические сэндвич-панели – прочность на сдвиг (срез) в поперечном сечении, на сжатие и прочность при растяжении.

Прочностные свойства теплоизоляционных плит находятся в прямой зависимости от таких параметров, как: плотность материала, количество связующего, ориентация волокон. Однако, существует ошибочное мнение при выборе утеплителя для той или иной системы, где изоляция испытывает нагрузку, что, чем большей плотностью обладает материал, тем более высока его механическая прочность.

Производители теплоизоляции могут предлагать материалы одинаковой плотности, имеющие различные показатели по возможным нагрузкам. И, наоборот, материалы, имеющие равнозначные прочностные характеристики, отличаются по своим плотностным параметрам. В данном случае бы_

ло бы правильнее говорить об удельном весе (кг/м3) теплоизоляционного материала. И, конечно, если

производитель может предложить утеплитель более легкий (т.е. c меньшей плотностью) и с более высокими нагрузочными характеристиками, то это дает дополнительные преимущест ва для конкретной системы.

Плиты PAROC, имея сравнительно небольшой удельный вес (по сравнению с аналогами, представленными на рынке, для той или иной конструкции), обладают такими показатели, позволяющими использовать их в различных системах и обеспечивающими неизменно высокое качество, надежность и долговечность этих систем. Все материалы испытаны в России, имеют необходимые Технические Свидетельства и Сертификаты, подтверждающие заявленные заводом-изготовителем характеристики. Прочностные параметры можно найти в таблицах для каждой области применения.

Стабильность размеров

Легкость и качество монтажа Изделия PAROC не дают усадки, а также не подвержены температурным деформациям. Материалы сохраняют свои геометрические размеры в течение всего периода эксплуатации здания, что гарантирует отсутствие мостиков холода, которые могут возникать на стыках иных теплоизоляционных плит или в местах примыкания их к каркасу вследствие их усадки. При необходимости изделия PAROC малой плотности режутся обычным ножом, более плотные – при помощи ножовки.

Эластичные плиты и маты для каркасных конструкций

Эластичные плиты и маты – это универсальный теплоизоляционный материал, который применяется для изоляции каркасных конструкций всех частей здания. Это пожаробезопасная, каменная вата, обладающая высокими теплоизоляционными характеристиками. Материал устанавливается путем запрессовывания между элементами каркаса без дополнительной фиксации. Легкий удельный вес и смешанная ориентация волокон являются гарантией того, что материал не осядет в конструкции и сохранит свою форму и свойства на весь период эксплуатации здания. Универсальные плиты применимы практически в любых конструкциях, где отсутствуют внешние нагрузки на теплоизоляциионный материал: наружные и внутренние стены, чердачные перекрытия и полы, скатные кровли и мансарды, звукоизоляционные и противопожарные перегородки.

Универсальные плиты PAROC eXtra, UNS 37

* Любые конструкции без внешних нагрузок на материал;

* Не требуют специальных навыков при установке;

* Плотно прилегают к элементам конструкции;

* Не дают усадки и не пылят;

* Сохраняют форму и размер на весь срок эксплуатации;

* Негорючие;

* Негигроскопичные.

Конструкция кровельного каркасного перекрытия

1) конструкция кровельного покрытия;

2) ветрозащита;

3) универсальная плита PAROC eXtra, UNS 37;

4) опорные доски и обрешетка с шагом 600 мм;

5) пароизоляционная пленка;

6) обшивка из досок-опор;

7) внутренняя отделка.

Компания «Баурекс» благодарит Вас за интерес к нашему сайту.

Надеемся на взаимовыгодное сотрудничество!

Теплопроводность минеральной ваты в сравнении с другими утеплителями

Разновидности минеральной ваты


Минеральные утеплители – это утеплители, изготовленные из сырья минерального происхождения. Наиболее популярным и широко используемым утеплителем является минеральная вата. Теплопроводность минеральной ваты — важный показатель целесообразности использования в качестве утеплителя.

Различают минеральную вату каменную и шлаковую. Каменную вату производят из различных горных пород, например, базальта, известняка, доломита. Она долговечна, качественна, имеет высокие эксплуатационные характеристики и часто используется при постройке зданий и строений.

Сырьем для шлаковой ваты является смесь из шлаков чёрной и цветной металлургии. Она менее долговечна, не предназначена для строений длительного использования. Не стоит использовать ее в условиях перепадов температур и повышенной влажности.

Показатели минеральной ваты


Основные показатели минеральной ваты приведены в таблице

Характеристика

Минеральная вата

Плотность

115 кг/м3

Водопоглощение при полном погружении, не более

1%

Средний диаметр волокна, не более

0,2 мкм

Содержание неволокнистых включений по массе, не более

4,5%

Теплопроводность при 283+1 К, не более

0,044 Вт/м *К

Предел прочности на сдвиг, не менее

50 кПа

Предел прочности на сжатие, не менее

100 кПа

Предел прочности на растяжение, не менее

150 кПа

Теплопроводность утеплителей. Что это?


Коэффициент теплопроводности показывает количество тепла, проводимое через 1 квадратный метр поверхности материала толщиной в 1 м за час при отсутвии утечки тепла сбоку и разности температур обеих поверхностей в 1 °С. Это одно из наиболее важных свойств теплоизоляционных материалов. Понятно, что чем меньше показатель теплопроводности, тем меньше тепла теряется.

Теплопроводность минеральной ваты

Если сравнивать теплопроводность минеральной ваты с теплопроводностью других теплоизоляционных материалов, то получим такие показатели:

Теплопроводность, Вт/м °С / необходимая толщина слоя утеплителя, мм:


Базальтовая вата – 0,039 /167 мм
Пенополистирол – 0,037 /159 мм
Стекловата – 0,044/189 мм
Керамзит – 0,170/869 мм
Кирпичная кладка – 0,520/1460 мм

Сравнительные коэффициенты теплопроводности строительных материалов:


Бетон – 1,5
Каменная кладка на растворе – 1,2
Рабочий кирпич – 0,6
Облицовочный кирпич – 0,4
Штукатурный гипс – 0,3
Ячеистый бетон – 0,2
Стекловата – 0,05
Пробковые покрытия – 0,039
Минеральная вата – 0,035
Пенопласт — 0,034

Как видно из показателей, теплопроводность минеральной ваты уступает только материалам из пенополистирола. Хотя если сравнить пенополистирол и каменную вату по огнестойкости, то тут каменная вата точно в победителях. Все виды каменной ваты относят к негорючим материалам.

Свойства минеральной ваты


Коэффициент теплопроводности показывает способность проводить тепло. Однако чтобы определиться с нужным материалом для утепления, важно учитывать не только его теплопроводность, но и другие, не менее важные характеристики.

Кроме хорошего показателя теплопроводности минеральная вата:

  • Огнеупорная – материал противостоит воздействию высоких температур
  • Устойчивая к агрессивным химическим средам
  • Экологичная – материал безвреден для человека
  • Паропроницаемая — пропускает пары воды
  • Пластичная – под воздействием внешней силы способна принимать нужную форму
  • Легкая в монтаже – мягкая легко режется ножом, прочная – ножовкой
  • Влагостойкая – приполном погружения уровень поглощения воды составляет 0,5%
  • Устойчива к воздействию бактерий и грибков
  • Не дает усадки со временем, тем самым не допускает появление мостиков холода
  • Долговечная – при правильном использовании срок службы составляет около 70 лет.


Еще одним, немаловажным достоинством минеральной ваты является ее стоимость. Именно благодаря всем выше перечисленными характеристиками минеральная вата стала одной из наиболее популярных утеплителей на рынке строительных материалов.

Правильный выбор утеплителя позволить иметь комфортные условия в доме долгие годы.

Свойства каменной ваты

На этом сайте используется javascript, некоторые функции и контент не работают, если javascript отключен

Идея производства каменной ваты зародилась на Гавайях в начале прошлого века. Во время извержения вулкана из выброшенной в воздух лавы образуются волокна. Таким образом, каменная вата является исключительно натуральным продуктом, который сочетает в себе прочность камня и теплоизоляционные характеристики, присущие вате.Волокна каменной ваты являются основным материалом, используемым при производстве всей продукции Rockwool.

Пожарная безопасность

Одним из важнейших свойств каменной ваты является ее способность выдерживать температуры выше 1000 ° C. При правильном применении каменная вата Rockwool служит пожаробезопасным слоем, который обеспечивает бесценные минуты, которые могут оказаться необходимыми для спасения человеческих жизней. Здания, утепленные каменной ватой, защищены от возгорания, так как каменная вата предотвращает разрушение и распространение огня.

Теплоизоляция

Каменная вата имеет очень низкий коэффициент теплопроводности, что делает ее одним из лучших теплоизоляционных материалов.
Каменная вата Rockwool — отличный теплоизоляционный материал, обеспечивающий защиту от холода и жары. Системы теплоизоляции из каменной ваты позволяют максимально экономить энергию на отопление и охлаждение, а также улучшают микроклимат и комфорт в зданиях.

Звукоизоляция

Энергия акустических колебаний проходит через структуру каменной ваты и преобразуется в тепло.Структура каменной ваты с ее переплетенными волокнами просто устраняет и поглощает колебания в воздухе. Такая волокнистая структура делает каменную вату одним из самых надежных строительных материалов для звукоизоляции.

Водоотталкивающие свойства

Каменная вата Rockwool может казаться влажной под воздействием воды или дождя. Вода просто остается на поверхности, потому что волокна каменной ваты Rockwool обладают водоотталкивающими свойствами. Пропитка из волокон каменной ваты применяется по всей структуре изделия, а не только на поверхности.В частности, по этой причине вода не может проникать во внутренние слои продукта.

Паропроницаемость

Каменная вата Rockwool является паропроницаемой, что делает утепленное здание очень удобным для жизни или работы, поскольку влага не удерживается внутри здания.

Стабильность размеров

Размеры каменной ваты Rockwool не меняются при повышении или понижении температуры окружающей среды. Неоднородная ориентация волокон каменной ваты в продуктах Rockwool обеспечивает им превосходные механические свойства и постоянную стабильность размеров.

Что делает каменную вату лучшим выбором для утепления

Каменная вата — это то же самое, что звучит: камень и минералы, превращенные в шерсть. Как он работает как изоляционный продукт и чем отличается? Мы поговорили с партнером TOH Ником Шиффером, плотником и владельцем NS Builders, чтобы поговорить о том, почему он выбрал каменную вату ROCKWOOL для превосходной теплоизоляции как на строительной площадке, так и в своем собственном доме.

Фото Коллин Маккуэйд

Что такое ROCKWOOL?

ROCKWOOL — компания, производящая изоляцию из каменной ваты. Каменная вата, также известная как минеральная вата, создается путем прядения расплавленной породы и минералов со стальным шлаком для создания шерстяного продукта, похожего на сахарную вату. Спрессованная в рулоны и листы, каменная вата создает невероятно эффективную изоляцию с звукопоглощающими и огнестойкими свойствами. Он устанавливается в полость стены, как любой изолирующий войлок, но может быть гибким или жестким, предлагая полный спектр решений, соответствующих вашим потребностям.

Эффективно

Продукты

ROCKWOOL получают свои тепловые свойства из-за крошечных карманов воздуха, захваченных в физических структурах каменной ваты. Такая структура позволяет теплоизоляции не пропускать горячий воздух в жарком климате и сохранять тепло в холодном климате.

Это безопаснее
Каменная вата устойчива к возгоранию. Таким образом, если начнется пожар, это замедлит распространение, давая вам и вашей семье больше времени для побега.

Это тише
ROCKWOOL отличается высокой плотностью и отлично поглощает звук. «В моем бизнесе мы обычно предлагаем устанавливать ROCKWOOL в общих стенах многоквартирных домов, чтобы уменьшить шум во всем доме и повысить комфорт. Но мы также используем его в одноквартирных домах для создания звуковых барьеров между ванными комнатами и спальнями, и в более шумных помещениях, таких как гостиные или медиа-комнаты «. А в собственном доме Ника: «Мы утеплили весь потолок первого этажа, чтобы уложить детей спать наверху, в то время как мы продолжаем развлекать гостей на первом этаже.«

Предоставлено ROCKWOOL

Это влагоотталкивающий материал
Изоляция ROCKWOOL естественным образом отталкивает воду и влагу, поэтому вода не влияет на долговременные тепловые характеристики изоляции. Ник часто заменяет поврежденное стекловолокно на ROCKWOOL в проектах реконструкции, особенно в тех частях дома, которые подвержены повторяющимся явлениям влажности, например, в подвалах, где уровень влажности может быть высоким.

Здоровее
Влага и плесень могут повлиять на структурную целостность вашего дома, отрицательно сказаться на его тепловых характеристиках и поставить под угрозу здоровье органов дыхания его обитателей. Ник объясняет: «Использование ROCKWOOL способствует созданию более здоровой окружающей среды в помещении, поскольку он нетоксичен и естественно устойчив к гниению, плесени, плесени и росту бактерий».

Чтобы узнать больше, посмотрите, как Ник демонстрирует некоторые преимущества ROCKWOOL, или переходите на минеральную вату.com

Фото Коллин Маккуэйд

Центр CE — Библиотека Центра CE

Все курсыТемаСтатьиМультимедиаВебинарыНано кредитыСпонсорыПодкасты

24 марта 2021 г., 14:00 EDT

Использование шторок для освещения общих комнат и других медицинских помещений

, 25 марта 2021 г., 14:00 EDT

6 апреля 2021 г., 14:00 EDT

7 апреля 2021 г., 14:00 EDT

Товары, надежность и удовольствие от проектного учета

8 апреля 2021 г., 14:00 EDT

15 апреля 2021 г., 14:00 EDT

15 апреля 2021 г., 14:00 EDT

21 апреля 2021 г., 14:00 EDT

28 апреля 2021 г., 14:00 EDT

Эти проекты показывают, что может произойти с упором на благополучие

Растительность — это только часть идеальной системы зеленой крыши.Научитесь максимально удерживать дождевую воду, пока м …

Высокоэффективные покрытия повышают структурную целостность, прочность и воздействие на здоровье здания …

Новая технология обеспечивает надежность в коммерческих средах с интенсивным движением

Раковины из нержавеющей стали производства U.S. оказались гигиеничными, экологичными и коррозионно-стойкими растворами …

Street Smarts: дизайнеры ограничивают автомобили, чтобы освободить место на городских дорогах для пешеходов, велосипедистов и других людей …

Моделирование механических свойств плит из минеральной ваты для теплоизоляции внешних стен

Плиты из минеральной ваты (RWB) широко используются во всем мире при строительстве внешних изоляционных материалов.Диаметр волокна, объемная доля твердого вещества (SVF) и степень контакта между волокнами существенно влияют на физические свойства RWB. Здесь влияние этих факторов на механические свойства RWB было исследовано с помощью программного обеспечения GeoDict. Во-первых, процесс образования волокон привел к уменьшению диаметра волокна, и SVF RWB увеличивалась с уменьшением размеров пор. Кроме того, как диаметр волокна, так и SVF существенно влияют на сопротивление сдвигу RWB. Кроме того, в соответствии с китайскими стандартами прочности на сжатие, растяжение и сдвиг, SVF RWB с 10.5 мкм Диаметр волокна м не превышал 4,72%, 4,04% и 5,4% соответственно. Предлагаемый здесь новый метод может быть использован для оптимизации производственного процесса RWB.

1. Введение

В качестве изоляционного материала плита из минеральной ваты (RWB) широко используется для внешней изоляции. За последние несколько десятилетий требования к теплопроводности, механическим и физическим характеристикам этого материала значительно улучшились. Однако подробное исследование механических свойств волокнистых изделий со сложной мезоструктурой сталкивается с большими проблемами, поскольку традиционный макроскопический тест не может точно предсказать деформационное поведение волокнистых изделий или рекомендовать оптимизированные мезоскопические структурные параметры (такие как плотность волокна, длина, диаметр и точка контакта. ) [1].

RWB состоит из волокон разного размера, соединенных простым перекрытием. Связь между волокнами и влияние смолы на прочность и жесткость RWB значительны [2]. Нарушение связи между волокнами и трение также сильно влияют на деформацию и повреждение RWB, что экспериментально наблюдали Liu et al. и Wilbrink et al. [3, 4]. RWB со временем ухудшается, и точка соединения между RWB и внешним штукатурным слоем была недействительной, что привело к отслаиванию покровного слоя.Из-за большого отрицательного ветрового давления [5, 6] изоляция внешних стен здания (рис. 1) может отвалиться или даже повредить системы внешней изоляции. Поэтому к механическим свойствам RWB предъявляются разные требования в зависимости от предполагаемого использования.


Для практического применения RWB требует разной прочности, чтобы противостоять силам окружающей среды и собственному воздействию. В области композитных изоляционных плит для наружных стен сдвиговые и растягивающие напряжения промежуточных слоев RWB были относительно большими из-за внешней среды, что существенно повлияло на прочностные характеристики RWB при взаимно перпендикулярных поперечных нагрузках [7].Прочность на сжатие и другие механические свойства изделий из минеральной ваты зависели от распределения волокон в структуре, а также от направления действия нагрузки и плотности изделия [8]. Когда волокнистый продукт подвергается нагрузке и местная деформация неоднородна, может произойти локальное повреждение [9]. Однако о его механических свойствах сообщалось мало. В некоторых исследованиях использовалось численное моделирование для изучения взаимосвязи между мезоструктурой RWB и макроскопическими характеристиками.Исследование и дизайн композитной мезоструктуры играет ключевую роль в дизайне материалов [10–12].

Для изучения корреляции между мезоструктурой и механическими свойствами RWB, механические свойства различных мезоструктурированных RWB могут быть рассчитаны путем численного моделирования [13]. Рентгеновская томография (КТ) [14–16] использовалась для получения сканированных изображений волоконных продуктов, которые впоследствии были импортированы в программу GeoDict для определения реальной структуры волоконных продуктов, расчета способности к макроскопической деформации [17, 18] и прогнозировать механические свойства [19] волокнистых изделий.Оснащенный улучшенным алгоритмом [20, 21] для создания трехмерной модели структуры волокна непрерывных длинных и коротких волокон, была изучена взаимосвязь между длиной волокна, диаметром, плотностью и ориентацией.

Прочность RWB на сжатие, растяжение и сдвиг были также испытаны с использованием универсальной электронной испытательной машины с микроконтроллером WDW3030 (UTM; Kexin Testing Instrument Co. Ltd., WDW3030, Чанчунь, Китай). В сочетании с программным подходом были рассчитаны прочность на сжатие, растяжение и сдвиг RWB с различными диаметрами волокон, объемными отношениями твердых тел и степенями контакта.Диаметр волокна составлял 3–10,5, мкм, м, объемная доля твердых частиц составляла 3,70–6,08%. Также была определена формула оптимизации индекса прочности RWB. Это исследование закладывает основу для оптимизации структурного проектирования RWB и оптимизации промышленного производства.

2. Материалы и методы
2.1. Материалы

RWB был продуктом из неорганического стекловолокна [22] на основе природных горных пород (таких как базальт) в качестве основного сырья, содержащего определенное количество примесей.Ряд процессов, включая плавление при высокой температуре [23, 24] (Рисунок 2 (a)), четырехвалковое высокоскоростное центрифужное прядение [25, 26] (Рисунок 2 (b)), волокнообразование [23], постобработка и другие процессы были выполнены, и химический состав приведен в таблице 1.

9017 9017 O TiO 2 902 902
902 9021.1. Элементный анализ

Основными составляющими элементами волокна были Si, Al, Ca и Mg, которые составляют примерно 82,08% от общего содержания. Кроме того, было обнаружено небольшое количество Na, P, K, Ti, Mn и Fe. Поскольку Si 4+ и Al 3+ были основными компонентами сети, образующей волокна, которые вместе составляли каркас, высокое содержание оксидов, таких как SiO 2 и Al 2 O 3 , способствовало увеличению улучшенная стабильность волокна [22].Кроме того, оксиды, такие как MgO и CaO, действуют как ионы с модифицированной сеткой, а заполненная волокнистая структура и ионы, образующие сетку, составляют стекловидную структуру.

2.2. Вычислительные методы
2.2.1. Эксперимент

(1) Модуль упругости . Электронная машина для измерения прочности одиночных волокон YG005E (Fangyuan Instrument Co., Ltd., YG005E, Вэньчжоу, Китай) использовалась для измерения прочности на разрыв отдельных волокон. Машина для определения прочности одного волокна имела диапазон 50 сН и значение градуировки 0.01 cN. Верхняя и нижняя губки машины были установлены на расстоянии 50 мм, а скорость растяжения составляла 5,0 мм / мин. Средняя прочность на разрыв волокон была измерена, как показано в таблице 2, и модуль упругости одиночного волокна составил 61,4 ГПа: где σ — предел прочности моноволокна на разрыв, МПа; F — усилие разрыва моноволокна, сН; и D — средний диаметр, мкм м.


Состав SiO 2 Al 2 O 3 M CaO TFe 2 O 3 K 2 O

Содержание (%) 37.37 13,08 10,13 21,50 6,63 1,42
Состав Na 2 O TiO 2 9017 LO 9017 4 ИТОГО
Содержание (%) 2,96 2,42 0,32 0,20 2,96 98,72

Волокно

Диаметр ( мкм, м) Разрывное усилие (сН) Прочность (МПа) Стандартное отклонение (%)
9.867 8,17 1068,50 3,7

(2) Механические свойства . С учетом требований Китая к прочности были изготовлены образцы RWB. Образцы имели размеры 100 мм × 100 мм × 30 мм и 200 мм × 100 мм × 30 мм, а значения SVF составляли 3,70%, 4,04%, 4,38%, 4,72%, 5,06%, 5,4%, 5,74% и 6,08% соответственно. Образцы сушили до постоянного веса в струйной сушке с постоянной температурой типа 101-1 при температуре приблизительно 105 ° C, а затем извлекали и помещали в среду (23 ± 5) ° C на 6 часов.Впоследствии каждое указанное значение прочности было средним для трех образцов. Прочность проверяли с помощью электронного микроконтроллера WDW3030 UTM (Kexin Testing Instrument Co., Ltd., Чанчунь, Китай).

Для измерения прочности на сжатие RWB был установлен на прессе, и было приложено предварительное давление 250 Па с постоянной скоростью 0,1 д / мин (± 25% или меньше) до тех пор, пока образец не сдался или не сжался до 10% деформации до получить прочность на сжатие.

Предел прочности на разрыв измеряли, когда образец наклеивали на две жесткие пластины с помощью мраморного клея и отвердителя.Затем образец был установлен на крепление испытательной машины и нагружен с постоянной скоростью (10 ± 1) мм / мин до тех пор, пока он не был разрушен для достижения его прочности на разрыв.

Для измерения прочности на сдвиг образец был прикреплен к приспособлению с помощью мраморного клея и отвердителя, приспособление было закреплено на UTM и нагружено со скоростью (3 ± 0,5) мм / мин по длине, параллельной длине. образец. Жесткая опорная пластина передавала на образец напряжение сдвига, позволяя сдвигать образец до тех пор, пока он не сломался, чтобы получить прочность на сдвиг.

Из-за сложности изделий из волокна было невозможно количественно проанализировать влияние диаметра волокна на механические свойства в лабораторных испытаниях. Таким образом, для качественного анализа с целью изучения влияния диаметра волокна на механические свойства RWB были выбраны два RWB (рис. 3) с различным распределением диаметров с SVF 4,72% (см. Рис. 3). ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2.2.2. Численное моделирование

(1) КТ-сканирование . Исследуемый RWB представлял собой куб с длиной стороны 2 мм.Образец сканировали с использованием CT с нанотомами (phoenix nanotom m CT, Zeiss, Германия) с мощной нанофокусной рентгеновской трубкой 180 кВ / 15 Вт и детектируемостью до 200 нм. Были сфотографированы КТ-изображения, SVF составил 4,72%. Регулярное распределение волокон было аналогичным в трех направлениях (часть 2 в дополнительном материале).

(2) Метод моделирования . Диаметр RWB был извлечен модулем FiberGuess и соответствовал распределению Гаусса со средним диаметром 10.5 мкм м. Исходная модель была создана модулем импорта в программном обеспечении. Чтобы упростить расчет, модуль FiberGeo был использован на основе исходной модели для ввода основных параметров (SVF, длина волокна, диаметр, форма поперечного сечения и метод перекрытия волокон), которые могут напрямую представлять геометрические характеристики материала для определения упрощенная модель RWB. Наконец, модуль ElastoDict был использован для расчета механических свойств RWB с различными мезоструктурами (рис. 4).


2.3. Программное обеспечение Theory

GeoDict было использовано для анализа механических свойств RWB из-за его сложных силовых характеристик. Соответствующий размер элемента представительного объема (RVE) [27, 28] был выбран, чтобы представить фактическое поведение мезоструктуры, построенной с использованием экспериментальных данных длины, диаметра и ориентации волокна. После создания механической модели было получено основное уравнение решения. Эквивалентный модуль упругости был получен с помощью периодического условия Грина и математического преобразования.

Применение уравнения L-S на основе метода БПФ позволяет точно рассчитать локальное напряжение и деформацию в оптоволоконной сети. Таким образом, численное моделирование использовало уравнение LS, основанное на периодической функции Грина БПФ, для расчета механического индекса модели RWB следующим образом: где ε ( x ) относится к деформации модели на Ω, в которой Ω — единичное тело, являющееся граничным условием; E — постоянная деформация; и относится к оператору Грина, который определяется как; и — остаточное напряжение, и,, C 0 описывает начальную жесткость, и — местная жесткость.

3. Результаты и обсуждение
3.1. Проверка и анализ модели

На рис. 5 (а) показано поперечное сечение исходной модели, в которой круглое сечение представляет собой шлаковый шар, а точечное или линейное сечение — волокно. Рисунок 5 (б) представляет собой исходную модель размером 2 мм × 2 мм × 2 мм. На рисунке 5 (c) показана упрощенная идеальная модель. Чтобы более четко показать упрощенное волокно, размер модели, показанный на Рисунке 5 (c), составляет 0,3 мм × 0,3 мм × 0,3 мм. Из рисунка 5 (b) видно, что волокна в RWB были равномерно распределены и перекрывались или раздваивались.Идеальная модель на рис. 5 (c) не учитывала влияние шарика шлака и приравнивала его к волокну. Предполагалось, что волокна были распределены случайным образом (часть 3 в дополнительном материале) и перекрывались.

3.2. Прочность на сжатие RWB

На рисунке 6 показаны измеренные значения прочности на сжатие RWB и результаты численного моделирования для различных SVF. Относительная ошибка между численными и измеренными значениями была большой для волокон со средним диаметром 5.9 и 12 мкм м. Поскольку SVF изменился в системе с диаметром волокна 10,5 мкм, м, тенденция измеренных значений соответствовала моделированию. Таким образом, была проверена рациональность расчета на основе уравнения Л-С. Однако для численного моделирования были сделаны предположения относительно шлакового шара и связующего из смолы в RWB, а влияние скручивания волокон не учитывалось, что привело к снижению прочности на сжатие при численном моделировании.


На механические свойства RWB в основном влияют геометрические параметры, включая ориентацию волокна [29], длину [30], SVF, диаметр [31] и степень контакта между волокнами.На основании изменения геометрических параметров RWB было изучено влияние SVF, диаметра волокна и степени контакта на механические свойства.

3.3. Построение теоретической модели

Вероятность распределения диаметров двух RWB показана на Рисунке 7.

Рисунки 7 (a) –7 (d) показывают, что различные распределения диаметров RWBs со значением SVF 4,72%. На рисунках 7 (a) и 7 (c) показаны основные характеристики RWB I, а на рисунках 7 (b) и 7 (d) представлены RWB II.На рисунках 7 (c) и 7 (d) показано, что средний диаметр RWB I составлял 10,5 мкм м, а диаметр RWB II был 5,9 мкм м. Рисунки 7 (а) и 7 (б) отражают характеристики распределения волокон разного диаметра. С увеличением диаметра волокна количество волокон в RWB непрерывно уменьшается. Размер пор между волокнами увеличился, а степень контакта между волокнами уменьшилась, что ослабило связи между волокнами, что может повлиять на механические свойства RWB. Рисунки 7 (a) –7 (d) показывают, что диаметр волокна уменьшался с увеличением скорости вращения валка во время процесса волокнообразования, что приводило к более высокому SVF RWB и меньшему размеру пор между волокнами.

3.4. Анализ влияния диаметра волокна

Следует убедиться, что модель может сохранять основную информацию о реальном RWB на 4,72% от SVF. Рисунок 8 (а) показывает, что прочность RWB уменьшалась с увеличением диаметра волокна. Когда диаметр волокна составлял от 5 до 7 мкм м, механические свойства RWB заметно ухудшались. Прочность на сжатие, растяжение и сдвиг снизились на 45,4%, 67,6% и 81,77% соответственно при увеличении диаметра волокна с 3 до 10.5 мкм м. Понятно, что изменение диаметра существенно повлияло на прочность RWB на сдвиг.

Рисунок 9 показывает, что количество волокон наряду с размером пор среди волокон увеличивается с увеличением диаметра волокна. Одновременно поверхность контакта между волокнами была уменьшена, что ослабило связи между волокнами (рис. 8 (b)), что является основным механизмом уменьшения прочности RWB. Кроме того, прочность RWB на сдвиг тесно связана с площадью трения между волокнами.По мере увеличения диаметра волокна степень контакта между волокнами уменьшалась, что приводило к более низкому коэффициенту трения между волокнами. Когда RWB подвергался сдвигу, структурные повреждения были признаны недействительными, и прочность постепенно снижалась до полного разрушения, что в основном происходило из-за фрикционного скольжения из-за ослабленных связей между волокнами [32–35]. Следовательно, меньшая прочность на сдвиг наблюдалась при увеличении диаметра волокна.

Эти эксперименты также показали отрицательную корреляцию между диаметром волокна и прочностью RWB, как показано в таблице 3.Когда диаметр волокна уменьшился на 4,6 мкм м, прочность на сжатие RWB увеличилась на 15,64 кПа, поскольку размер пор уменьшался с уменьшением диаметра волокна. Кроме того, увеличивалось перекрытие между волокнами, что увеличивало прочность связи между волокнами. Таким образом, была проверена возможность моделирования на основе уравнения L-S.


Средний диаметр ( мкм м) Прочность на сжатие (кПа)

I5 52,73
RWB II 5,9 68,37

3.5. Анализ влияния SVF

Для распределения диаметров при моделировании было установлено гауссово распределение, аналогичное реальному RWB, со средним диаметром 10,5 мкм м. Рисунок 10 (а) показывает, что сила RWB увеличивалась с увеличением SVF [36]. Механические свойства RWB были значительно улучшены с 4.От 04% до 4,72% SVF. Прочность на сжатие, растяжение и сдвиг увеличились на 37,5%, 156,4% и 218,6% соответственно при увеличении SVF с 3,70% до 6,08%. Понятно, что изменение SVF существенно повлияло на прочность RWB на сдвиг.

На рисунке 11 показано, что количество волокон увеличивалось, а размер пор уменьшался с увеличением SVF. Одновременно увеличилась контактная поверхность (рис. 10 (b)), что указывает на увеличение прочности RWB из-за улучшенных связей между волокнами.Точно так же прочность на сдвиг RWB была тесно связана с поверхностью трения. Прочность RWB в первую очередь контролировалась его плотностью и прочностью связи между волокнами. Более высокие значения SVF привели к увеличению прочности связи между волокнами [37]. Для срезанной RWB трение между волокнами меньше. Прочность на сдвиг RWB увеличивалась относительно быстрее, чем прочность на сжатие и растяжение. Площадь трения на рисунке 11 (c) больше, чем на рисунке 11 (a), и RWB показал максимальное значение прочности на сдвиг на уровне 6.08% SVF.

На рис. 12 показана взаимосвязь между экспериментально измеренной силой RWB и SVF. Прочность на сжатие, растяжение и сдвиг RWB положительно коррелировали с SVF. Когда SVF RWB составлял 3,70–6,08%, диапазон прочности на сжатие составлял 46,57–67,80 кПа; диапазон прочности на разрыв 9,68–21,06 кПа; диапазон прочности на сдвиг 13,6–34,5 кПа. Механические показатели увеличивались с увеличением SVF RWB.


3,6. Влияние диаметра и SVF

Рисунки 13 (a) –13 (c) показывают, что диаметр волокна отрицательно коррелировал с прочностью RWB при постоянном SVF.Когда диаметр волокна поддерживался постоянным, SVF приблизительно положительно коррелировал с прочностью RWB.

Из рисунков 13 (a) –13 (c) видно, что прочность на сжатие, растяжение и сдвиг RWB увеличивалась от нижнего левого угла к верхнему правому. Как показано на Рисунке 13 (а), когда диаметр волокна составлял 10,5 мкм, м и SVF составлял 3,70%, прочность на сжатие RWB составляла не менее 34,69 кПа. Когда диаметр волокна составлял 3 мкм, м и SVF составляли 6,08%, максимальная прочность на сжатие была достигнута при 84.14 кПа. SVF должен составлять ≤4,72% при диаметре волокна модели RWB 10,5 мкм м, что соответствует китайскому стандарту 40 кПа для прочности на сжатие при использовании RWB для теплоизоляции [38].

Как показано на Рисунке 13 (b), когда диаметр волокна составлял 10,5 мкм, м и SVF составлял 3,70%, прочность на разрыв RWB составляла 5,73 кПа. Когда диаметр волокна составлял 3 мкм, м и SVF составлял 6,08%, предел прочности на разрыв RWB достигал 33,36 кПа. SVF должен составлять ≤4,04%, когда диаметр волокна модели RWB равен 10.5 мкм м, что превышает китайский стандарт 7,5 кПа.

Наконец, как показано на Рисунке 13 (c), когда диаметр волокна составлял 10,5 мкм м и SVF составлял 3,70%, прочность на сдвиг RWB составляла не менее 5,59 кПа. Когда диаметр волокна составлял 3 мкм, м и SVF составлял 6,08%, прочность на сдвиг RWB достигала 75,24 кПа. Поскольку китайский стандарт составляет 20 кПа, SVF должен составлять ≤5,4% в RWB волокна диаметром 10,5 мкм и диаметром м.

Таким образом, диаметром волокна можно управлять с помощью скорости вращения четырехвалковой высокоскоростной центрифуги и вязкости расплава во время обработки минеральной ваты.В зависимости от толщины слоя и степени гофрирования SVF RWB можно контролировать для получения RWB с разной прочностью, а связанные модели могут использоваться для руководства фактическими приложениями инженерного производства.

4. Выводы

Сильные стороны RWB в основном зависят от его мезоструктуры. Согласно экспериментальным данным и данным моделирования, соответствующие механические свойства были оценены на основе анализа с использованием уравнения L-S с использованием программного обеспечения GeoDict. Основные результаты можно резюмировать следующим образом: (1) Была создана и упрощена 3-мерная модель компьютерного сканирования, основанная на уравнении Липпмана-Швингера для изучения влияния различных диаметров волокон и значений SVF на механические показатели.Численное моделирование показало, что разница между прочностью на сжатие и соответствующими экспериментально измеренными значениями составляет ˂5%. Это подтверждает точность прогнозирования механических свойств RWB с использованием этого метода. (2) Наблюдения SEM и распределение диаметров волокон показали, что по мере увеличения диаметра волокна в RWB количество волокон уменьшается, а размер пор увеличивается (3). ) При увеличении диаметра волокна с 3 до 10,5 мкм м механические свойства (прочность на сжатие, растяжение и сдвиг) RWB снизились на 45.4%, 67,6% и 81,77% соответственно. Следовательно, в соответствии с нашим предположением, диаметр волокна оказал наибольшее влияние на прочность на сдвиг. (4) Когда SVF составлял от 3,70% до 6,08%, механические свойства (прочность на сжатие, растяжение и сдвиг) RWB увеличивались на 37,5%, 156,4% и 218,6% соответственно. Таким образом, SVF показал наибольшее влияние на прочность на сдвиг, что согласуется с гипотезой. (5) Были изучены механические характеристики RWB с различными диаметрами волокон и значениями SVF.Согласно китайским стандартам прочности на сжатие, растяжение и сдвиг SVF должен составлять ≤4,72%, ≤4,04% и ≤5,4% соответственно. При среднем диаметре волокна 10,5 мкм м все требования к механическим характеристикам изоляционных материалов могут быть удовлетворены.

В полевых условиях диаметр волокна можно регулировать скоростью вращения центрифуги и вязкостью расплава, тогда как SVF можно регулировать толщиной слоя. Следовательно, можно проектировать RWB с различной механической прочностью, регулируя SVF и диаметр волокна в соответствии с различными требованиями.

Доступность данных

Данные, необходимые для воспроизведения этих выводов, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Работа выполнена при финансовой поддержке Фонда фундаментальных исследований для центральных университетов (№ 310828152016) и Проекта координации и инноваций в области науки и технологий провинции Шэньси (№2013KTCG02-02).

Дополнительные материалы

Сюда входят пять частей: первая часть представляет собой графическое резюме и его описание, за которым следует распределение волокон в различных направлениях в модели. Третья — это основа настройки ориентации волокон, а четвертая — распределение контактной поверхности между волокнами. Последний — это подходящее соотношение между диаметром волокна, SVF и механическими свойствами RWB. (Дополнительные материалы)

Каменная вата — это экологически чистый способ контроля температуры в наших домах

В строении зданий, в которых мы живем каждый день, есть ряд вещей, которые мы часто принимаем как должное.Среди них, и, пожалуй, наиболее важная, — это скрытый слой изоляции, который защищает нас от перепадов температуры снаружи. Изоляция, которая является главным элементом конструкции деревянных зданий, особенно защищает нас от звукового загрязнения и часто является неоценимым барьером от пожара и повреждения водой. Стекловолокно было предпочтительным материалом в игре с изоляцией (этот розовый материал, напоминающий застывшую сахарную вату), но теперь архитекторы обращаются к каменной вате как более эффективной и экологически чистой альтернативе.

Каменная вата, также известная как минеральная вата, изготавливается из природного базальта и переработанного шлака (минерального побочного продукта плавленой руды). Он обладает рядом уникальных характеристик, которые делают его ценным и экологически безопасным строительным материалом, включая способность противостоять плесени, огню и воде. Он также не выделяет токсичных газов, когда огонь вступает в контакт с его волокнами. Более того, каменная вата, кажется, обеспечивает более высокую теплоизоляцию и звукопоглощение, чем традиционное стекловолокно. Это универсальный эффективный репеллент, сделанный из одного из самых распространенных минералов на Земле.

Одна компания, в частности, лидирует в области теплоизоляции из каменной ваты. Компания Rockwool, расположенная в Онтарио, Канада, продвигает эту инновацию, чтобы она стала стандартной практикой при строительстве домов и офисов изнутри.

С точки зрения огнестойкости каменная вата может значительно препятствовать распространению огня внутри стен зданий, и во время такой чрезвычайной ситуации каждая секунда на счету. Изоляция Rockwool негорючая и выдерживает температуру до 1177ºC.Что касается повреждений из-за влаги, этот материал представляет собой суровую среду для роста бактерий, поэтому плесень и гниль практически не могут распространяться, что способствует более здоровому жилому пространству для людей внутри. По этой же причине каменная вата со временем не провиснет и не потеряет форму. Плотность волокон каменной ваты препятствует прохождению воздуха, а также в значительной степени снижает передачу звука.

Еще одним преимуществом является долговременный эффект исключительной теплоизоляции каменной ваты. Помогая домам оставаться в тепле в холодное время года и прохладнее летом, каменная вата может сэкономить на расходах на кондиционирование воздуха, что в долгосрочной перспективе немного облегчит экологию здания.

Потребность в улучшении сопротивления элементам во всех зданиях привлекает все большее внимание для защиты тех, кто использует и занимает построенные конструкции по всему миру. Изоляция из каменной ваты с ее выгодными свойствами и экологической природой выходит на первый план, когда речь идет о комплексной защите наших жилых и рабочих помещений.

Каменная вата — Каменная вата

Пример — изоляция из каменной ваты

Основной источник тепловых потерь из дома — через стены.Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,0 Вт / м · К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( тепловых потерь ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из каменной ваты толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,022 Вт / м · К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию теплопроводности и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи составляет:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105.9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стенку, отсутствие теплового контактного сопротивления и без учета излучения, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи составляет:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,022 + 1/30) = 0,207 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 0,207 [Вт / м 2 K] x 30 [K] = 6,21 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 6,21 [Вт / м 2 ] x 30 [м 2 ] = 186 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизолятора не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Роль изоляции из каменной ваты в обеспечении пассивной противопожарной защиты — International Fire Protection

Благодаря своему составу из природного базальта и переработанного шлака каменная вата обладает рядом уникальных и ценных характеристик, включая ее способность противостоять огню, воде и плесени.С изменениями кодов, расширением знаний о продуктах и ​​изменениями в практике строительства потребность в улучшении огнестойкости всех зданий привлекает все большее внимание для улучшения застроенной среды и защиты тех, кто использует и занимает строения по всему миру. Изоляция из каменной ваты с ее уникальными и полезными свойствами выходит на первый план, когда дело доходит до теплоизоляции для достижения пассивной противопожарной защиты.

Преимущества теплоизоляции из каменной ваты идеально подходят для использования с сэндвич-стеновыми панелями (SWP), учитывая тот факт, что каменная вата негорючая, неорганическая и не будет способствовать образованию вредного дыма или токсичных газов в случае пожара.Кроме того, каменная вата обеспечивает превосходные тепловые характеристики, предлагая дополнительные преимущества экологической устойчивости, влагостойкости и отличного звукопоглощения. Каменная вата традиционно используется в коммерческих и промышленных зданиях для изготовления внутренних стен, навесных стен, пустотелых стен и крыш с низким уклоном. Тем не менее, его использование в одно-, двух- и трехчасовом огнестойком SWP и других OEM-приложениях, таких как противопожарные двери и перегородки, в равной степени исследуется в связи с растущим спросом на улучшенную огнестойкость в зданиях, более строгие строительные нормы и правила. и растущая тенденция к экологически устойчивой строительной продукции.Каменная вата, выдерживающая температуру до 2150 ° F (1177 ° C), негорючая и не способствует распространению дыма или пламени при воздействии пламени.

SWP могут иметь длину до 12 м и могут устанавливаться вертикально или горизонтально. Для более крупных панелей иногда используется кран, чтобы опустить их на место.

Огнестойкость изоляции из каменной ваты

SWP, изготовленных с использованием горючих изоляционных материалов, создают ряд проблем. Что наиболее важно, если горючие материалы сердечника воспламеняются, металлическое покрытие на поверхности обычно экранирует эту изоляцию от активной системы предотвращения пожара, такой как спринклеры или другие системы пожаротушения.В результате возгорание внутри панели может быстро распространиться. Кроме того, многие горючие изоляционные материалы могут выделять токсичные газы и твердые частицы в воздух во время пожара. Это может повлиять на убегающих пассажиров, пожарных и окружающую среду в целом.

Материалы имеют значение. Негорючие материалы в пассивной противопожарной защите обеспечивают дополнительную надежность. Изоляция из каменной ваты может внести значительный вклад в комфорт и безопасность людей, обеспечивая при этом эффективность и экономию средств для владельцев на протяжении всего срока службы здания.Каменная вата очень эффективна в системах пожаротушения, помогая добиться разделения на отсеки. Благодаря высокой температуре плавления он потенциально обеспечивает больше времени для эвакуации пассажиров в случае пожара. Кроме того, изоляционный материал из каменной ваты не способствует образованию токсичного дыма или паров, что является серьезным аргументом в пользу его интеграции в системы пассивной противопожарной защиты. Статистика смертей, связанных с пожарами, очень ясна — дым, а не травмы, связанные с ожогами, является основной причиной большинства смертей, связанных с пожарами.

По данным Национальной ассоциации противопожарной защиты США, дым часто выводит из строя настолько быстро, что люди не могут добраться до другого доступного выхода. Когда огонь разрастается внутри здания, он часто потребляет большую часть доступного кислорода, при этом накапливаются токсичные газы. Поскольку изоляция из каменной ваты сертифицирована как негорючая по стандартам CAN4-S114, она не будет выделять токсичный дым или способствовать распространению пламени даже при прямом воздействии огня, как это происходит с большинством других изоляционных материалов.Фактически, при испытании в соответствии с ASTM E 84 (UL723) результаты из каменной ваты обычно показывают распространение пламени 0 и образование дыма 0 — один из самых низких из всех изоляционных материалов. Для сравнения, различные пенопластовые изоляционные материалы при испытаниях по ASTM E 84 обычно достигают распространения пламени 25 и дымообразования в диапазоне от 250 до 500. Изоляция из каменной ваты, используемая в системах пассивной противопожарной защиты, может помочь спасти жизни и защитить структурную целостность здания, уменьшая вероятность его обрушения из-за распространения пламени, тем самым сводя к минимуму повреждения.Таким образом, это может помочь создать более безопасную среду для пожарных, уменьшить ущерб окружающей среде и помочь снизить затраты на восстановление.

Почему стоит выбрать негорючий сердечник SWP?

Что касается конкретно SWP, спрос на каменную вату, особенно в Северной Америке, отстает от Европы. Это связано с тем, что потребность в SWP с негорючим ядром в Европе иная, чем во всем мире. Европейский спрос значительно увеличился в 1990-х годах в результате ряда пожаров в Соединенном Королевстве (Великобритания), в которых возникли пожары с изоляцией горючих жил.Общие потери от пожаров в пищевой промышленности Великобритании, где использовались SWP с горючей изоляцией, только в 1995 году составили более 38 миллионов долларов США. Ярким примером во Франции является пожар на мясокомбинате Бордо. Огонь внутри горючей изоляции в SWP распространяется со значительной скоростью 2,1 метра в минуту. Пожарные прибыли на место через 10 минут после первой тревоги. К тому времени уже было разрушено 6000 квадратных метров.

В качестве прямого ответа на эту катастрофу и катастрофы такого рода европейский рынок установил ряд правил и методов тестирования, направленных на разработку и использование SWP.Методы испытаний на огнестойкость варьировались от малых, до промежуточных и крупномасштабных. В результате надлежащие спецификации и усовершенствованные процедуры управления пожарной безопасностью значительно сократили количество пожаров, связанных с продуктами SWP в Европе. Теперь страховая отрасль Великобритании будет сертифицировать только те продукты, которые прошли крупномасштабные испытания на огнестойкость, в которых разрешены продукты SWP с негорючими сердцевинами, такими как изоляция из каменной ваты.

В большинстве стран мира негорючие, огнестойкие SWP являются частью нишевого рынка, хотя и постоянно растущего.Поскольку владельцы зданий все больше осознают разрушительные последствия пожара для их средств к существованию и окружающей среды, растет интерес к экологически безопасным альтернативам с противопожарной защитой. Миграция европейских производителей, знакомых с преимуществами каменной ваты SWP, также создает спрос и расширяет знания о продукции в Северной Америке.

Поскольку изменения в отрасли и эволюция кодексов и стандартов продолжают происходить, конкретному сообществу необходимо отреагировать, чтобы решения для пассивной противопожарной защиты продолжали развиваться к лучшему.Мышление статус-кво, которое автоматически делает выбор в пользу традиционных изоляционных материалов, таких как пенополистирол (EPS) и жесткий пенополиуретан (PUR / PIR или полиизоцианурат), необходимо и дальше оспаривать, чтобы рассмотреть альтернативы, предлагающие более безопасное решение. Изоляция из каменной ваты с присущей ей способностью противостоять чрезвычайно высоким температурам, а также дополнительными преимуществами звукопоглощения, влагостойкости, стабильности размеров, устойчивости и долгосрочных тепловых характеристик, оказывается очевидным выбором для изоляции SWP и других материалов. пассивные системы противопожарной защиты, такие как противопожарные двери, балочные / структурные системы и сборные конструкции туннелей.

SWP сделаны из двух внешних металлических листов со стабилизирующим сердечником из изоляции, зажатым между ними.

Кодовые требования

Когда дело доходит до соответствия нормам, ключевое преимущество использования SWP или других OEM-приложений с негорючими сердечниками можно описать одним словом: простота. Всю путаницу, сложность и двусмысленность можно легко устранить, указав негорючий сердечник, например, каменную вату. В зависимости от того, где и как используются продукты, SWP должны отвечать многочисленным требованиям.Требования различных огневых испытаний определяются многими факторами. Тип здания, размер и использование, а также расстояния до соседних границ собственности и процент незащищенных проемов во внешней стене, например, не огнестойкие окна и двери, являются одними из многих факторов.

Кодексы

Канады и США (например, Национальный строительный кодекс Канады 2005 г. и Международный строительный кодекс 2009 г.) содержат особые требования для приложений SWP, включающих «вспененные пластмассы», хотя эти требования не всегда применимы ко всем продуктам SWP, особенно к тем, которые не содержащие сердцевины из пенопласта.Требования североамериканских норм разделены на следующие три группы, классифицируемые по огнестойкости:

  1. Распространение пламени, воспламеняемость и рост внутреннего пожара
  2. Наружные стены
  3. Агрегаты с номинальной огнестойкостью

Типы материалов, используемых в SWP, и назначение стены определяют правила каждого кодекса. SWP с пенопластом имеют различные дополнительные ограничения, связанные с высотой здания, защитой от спринклерных систем, использованием термобарьеров и расстоянием между соседними линиями собственности.Напротив, продукты SWP с негорючими сердцевинами, такими как каменная вата, гораздо менее ограничены и гораздо менее сложны в использовании с точки зрения строительных норм.

No related posts.

Навигация по записям

Предыдущая запись:

Что такое теплица: Теплица — это… Что такое Теплица?

Следующая запись:

Как правильно укладывать подложку под ламинат: какой стороной класть, как правильно стелить пробковую и хвойную подложку своими руками

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Рубрики

  • Дизайн
  • Дом
  • Интерьер
  • Кухня
  • Стиль
  • Эко
  • Разное
Copyright © 2019 "DoorsStyle" Все правва защищены. Политика конфиденциальности right