Стабилизатор напряжения какой лучше: как выбрать и какой лучше
Какой стабилизатор напряжения выбрать для частного дома?
Дачные домики часто строятся по принципу «я тебя слепила из того, что было», а избы в деревне — не ремонтируются с тех пор, как их поставил колхоз. В этом есть своя романтика, но она, определенно, не идет на пользу электрической проводке. Подача электроэнергии в дачном поселке далеко не так стабильна, как в городе, плюс сырость и зимний холод упорно точат старые провода. Что делать, чтобы в один прекрасный день дряхлая проводка не полыхнула, аки свеча? В этой статье расскажем, какой стабилизатор напряжения 220В для дачи выбрать.
Содержание
- Что такое стабилизатор напряжения, и зачем он нужен
- Какой стабилизатор напряжения выбрать для частного дома
- Стабилизатор напряжения для частного дома: как выбрать
- Стабилизаторы напряжения для дома: отзывы и какой лучше
Что такое стабилизатор напряжения, и зачем он нужен
Как ясно из самого названия, стабилизатор электрического напряжения — это устройство, которое стабильно поддерживает напряжение 220 В в вашем доме. Для дачи это устройство чрезвычайно полезно, так как скачки напряжения в дачно-садовых товариществах — вещь нередкая.
Часто на весь поселок один-единственный трансформатор, который обслуживается постольку-поскольку. Поэтому напряжение в сети может то падать, то наоборот — взлетать до шокирующих высот (например, если в трансформатор попадает молния — случай, едва не стоивший инфаркта одному из наших редакторов).
Стабилизатор — это своего рода переходник между электросетью и проводкой вашего дома. Он принимает входной ток и усиливает или ослабляет его напряжение до 220 В, чтобы все электроприборы в доме получали равномерное питание. В случае значительных перепадов напряжения в сети стабилизатор может аварийно отключить электричество в доме.
Какой стабилизатор напряжения выбрать для частного дома
Выбор стабилизатора напряжения следует начинать с его типа. Во-первых, они бывают сетевыми и магистральными. Сетевые работают от розетки и стабилизируют напряжение для одного-двух подключенных устройств. Магистральные — подключаются прямо к проводке и защищают всю электросеть в доме. В случае частного дома имеет смысл вести речь о покупке магистрального стабилизатора.
Магистральные стабилизаторы делятся на несколько видов.
Ступенчатые стабилизаторы
Ступенчатые стабилизаторы разделяются на релейные и электронные.
Релейный стабилизатор содержит трансформатор, обмотки которого замыкаются с помощью программно управляемых реле. При переключении происходит повышение или понижение напряжения. Релейные стабилизаторы компактные, имеют широкий диапазон изменения напряжения, выдерживают длительную перегрузку в сети, работают даже в условиях низких температур, бесшумно и очень долго — до 10 лет. А стоят при этом недорого, так что очень широко применяются в быту.
Например, это стабилизаторы Ресанта:
Электронный стабилизатор вместо реле использует микроэлектронные компоненты, которые способны замыкать обмотки — ключи-тиристоры. По сигналу с управляющей платы они включаются и выключаются с определенной периодичностью, тем самым регулируя напряжение.
Электронные стабилизаторы имеют более высокую точность регулировки напряжения, более эффективно поддерживают мощность тока в сети при стабилизации (тогда как при переключении реле свет может «моргать») и также работают совершенно бесшумно. Однако, они имеют большие габариты и вес, а также стоят дорого.
Среди популярных марок — например, БАСТИОН:
Электромеханические стабилизаторы
Электромеханические стабилизаторы разделяются на собственно электромеханические, электродинамические и гибридные.
Электромеханический стабилизатор имеет графитную щеточку с сервоприводом, которая переключает количество витков обмотки трансформатора, тем самым повышая или понижая напряжение. Эти стабилизаторы имеют широкий диапазон входных напряжений, устойчивы к перегрузкам и искажениям тока на входе. Но зато у них недолгий срок работы — через 3-4 года угольная щеточка уже подлежит замене. Кроме того, он плохо работает в условиях низких температур и высокой влажности, а при стабилизации на долю секунды раздаются характерные щелчки. Стоят они намного дешевле электронных, но куда дороже релейных.
Популярные модели таких стабилизаторов выпускает, к примеру, RUCELF:
Электродинамические стабилизаторы — это подвид электромеханических стабилизаторов, в которых вместо щеточки переключения используется специальный ролик, который практически не изнашивается. Таким образом, они лишены главного недостатка элекромеханических стабилизаторов — быстрого выхода из строя, при этом сохраняя их достоинства.
К сожалению, это самый дорогой вид стабилизаторов. К этому виду относятся, к примеру, итальянские стабилизаторы ORTEA:
Гибридные стабилизаторы представляют собой комбинацию между электромеханическим и релейным стабилизатором. В них применяется и замыкание обмоток при помощи реле, и переключение количества витков, что позволяет объединить достоинства двух типов и побороть недостатки — к примеру, невозможность работы при низкой температуре.
Такие стабилизаторы стоят примерно как электронные — то есть, недешево. Например, их делает фирма Энергия:
Стабилизаторы с двойным преобразованием
Предыдущие типы стабилизаторов принимают на входе переменный ток из сети и выдают на выходе переменный ток. Стабилизаторы с двойным преобразованием сначала преобразуют переменный ток в постоянный, который питает инвертор, на выходе опять отдающий переменный ток — но со стабильным напряжением 220 В, частотой 50 Гц и синусоидальной формой.
Такой правильный, «выхолощенный» от всех помех ток — главное преимущество стабилизаторов с двойным преобразованием: он безопасен для питания любой техники, поэтому их рекомендуют для дорогостоящего оборудования. Недостаток — низкий коэффициент полезного действия: слишком много пустого расхода электроэнергии.
У стабилизаторов с двойным преобразованием широкий разброс цен. Например, вот такой стабилизатор Штиль относительно недорог:
Как выбрать стабилизатор для дачи? Для сезонного дачного домика наиболее рентабелен обыкновенный релейный стабилизатор. Но если вы живете в частном доме постоянно, и у вас есть отопление, можно задуматься об одной из электромеханических моделей. А если у вас, к тому же, дорогая бытовая техника, то и устройство с двойным преобразованием не будет лишним.
Стабилизатор напряжения для частного дома: как выбрать
Рассмотрим основные параметры, по которым выбирается стабилизатор любого типа:
- Мощность. суммарная мощность приборов, подключаемых к стабилизатору — это ваш телевизор, холодильник, обогреватель и все остальное, вплоть до светильников. Узнать ее можно в инструкциях к вашей бытовой технике, или прямо на корпусе (например, у лампочек). У стабилизатора должен быть определенный запас мощности.
Лучше, если он будет превышать суммарную мощность всей техники как минимум в 3 раза.
- Рабочее напряжение (минимальное и максимальное). Диапазон напряжений, в котором стабилизатор может работать без перегрузки. Чем он шире, тем лучше.
- Фазность. Стабилизаторы бывают однофазными и трехфазными — то есть, состоящими из одного или трех стабилизаторов, имеющих единую систему управления. Для частного дома нет никакого смысла приобретать трехфазный стабилизатор, если только вы не используете на даче электрическую печь или особо мощный насос. Для проводки в доме хватит однофазного.
- Скорость стабилизации. Стабилизатор работает с определенной скоростью — она измеряется в вольтах в секунду (В/c). Чем она больше, тем лучше, тем меньше времени понадобится прибору, чтобы справиться с перепадом в сети.
- Точность стабилизации. Под этим термином, на самом деле, понимается погрешность, с которой стабилизатор отклоняется от стандартных 220 В.
Не рекомендуется приобретать приборы с погрешностью более 8%, для частного дома хватит 5-8%.
- Размещение. Стабилизатор может крепиться на стену, устанавливаться на пол или в специальные стойки. Настенные и напольные варианты — самые удобные в быту.
Стабилизаторы напряжения для дома: отзывы и какой лучше
Приведем несколько удачных моделей стабилизаторов разных типов, чтобы вы могли ориентироваться на отзывы других покупателей.
РЕСАНТА ACH-5000/1-Ц
Качественный и бесшумный релейный стабилизатор с большим запасом мощности в 5000 Вт. Способен стабилизировать колебания напряжения от 140 до 260 В. На выходе получается напряжение с погрешностью 8% от 220 В — в среднем, от 202 до 238 В. Устанавливается на полу.
Штиль IS550
Простой в установке настенный стабилизатор с оптическими индикаторами и двойным преобразованием, а самое главное — недорогой. Впрочем, это обусловлено низким запасом мощности — 400 Вт. Зато диапазон входного напряжения огромный — от 90 до 310 В, и точность стабилизации высокая — погрешность всего 2%. Этим устройством можно отдельно экранировать от перепадов напряжения критически важные в частном доме приборы — к примеру, отопительный котел.
Энергия Classic 9000
Мощный электронный стабилизатор напряжения на 6300 Вт способен защитить целый дачный домик. Входное напряжение 125-254 В, выходное — 209-231 В. Точность стабилизации — 5%, хорошая норма. Стабилизатор крепится на стену и работает совершенно бесшумно.
Читайте еще полезные статьи о технике для дачи:
Фото: Flickr, MaxPixel, компании-производители
Какой стабилизатор лучше релейный или электромеханический — RozetkaOnline.COM
Для того чтобы ответить на вопрос какой стабилизатор лучше — релейный или электромеханический, давайте сравним основные характеристики этих приборов, их основные достоинства и недостатки.
В качестве примера возьмем два популярных у потребителей стабилизатора фирмы РЕСАНТА, которые часто покупают как на дачу, так и в квартиру, это:
Ресанта АСН 10000/1-Ц – однофазный релейный стабилизатор напряжения (электронный), подробная информация досупна по ссылке
Ресанта АСН 10000/1-ЭМ – однофазный электромеханический стабилизатор напряжения, подробная информация досупна по ссылке
Ниже вы можете видеть сводную таблицу со всеми основными характеристиками этих стабилизаторов напряжения.
В ней, как вы можете видеть, довольно много совпадений, но есть и существенные различия, давайте рассмотрим их, сразу же по каждому пункту выявим лидера, а в конце статьи подведем общий итог и узнаем какого типа стабилизатор напряжения всё же лучше.
Начнем с последнего по положению, но не по значению при выборе и покупке пункту – цена.
Стоимость релейного и электромеханического стабилизатора
Чаще всего, независимо от производителя, разница в цене на релейные и электромеханические стабилизаторы напряжения составляет около 30%, на столько, в среднем, электронные модели дешевле.
И здесь нечему удивляться, большая часть этой разницы составляет регулируемый автотрансформатор в механическом стабилизаторе, в электронной модели его нет, используются гораздо более дешевые – обычный автотрансформатор и силовые реле.
По этому пункту безоговорочно побеждает релейный стабилизатор, его цена ниже электромеханического на 30%.
Масса
Вес стабилизатора напряжения не самый критичный показатель при выборе, но он, в некоторых ситуациях, всё же играет свою роль, мобильность электромеханической модели гораздо ниже, т.к. его масса на 23% больше релейного, переносить сложнее.
Габаритные размеры
Габаритные размеры стабилизаторов этих видов вполне сопоставимы, здесь с небольшим преимуществом (разница всего 5-10%) побеждает релейный стабилизатор, его габариты чуть меньше, чем у механического.
Точность поддержания напряжения и номинальная величина выходного напряжения
Две этих важных характеристики, на деле показывают одно и то же, точность стабилизации, поэтому они объединены в один общий пункт. Как вы понимаете, эта характеристика очень важная и показывает насколько точно стабилизатор корректирует входящее напряжение.
Так, например, механический стабилизатор имея точность 2%, в нормальном режиме работы, будет выдавать напряжение в диапазоне от 216 до 224 Вольт, а это очень хороший показатель, даже самые чувствительные приборы не заметят такие изменения напряжения, для большинства из них это заложенные производителем нормальные режимы работы.
При этом релейный стабилизатор со своими 8% точности, будет давать выходное напряжение уже в диапазонах от 202 до 238 Вольт, а вот это уже существенная разница, не каждый прибор будет работать в штатном режиме при таком напряжении.
Таким образом, по точности стабилизации механический стабилизатор безоговорочно выигрывает у релейного.
Время регулирования
Время регулирования напряжения, она же скорость стабилизации, еще один наиважнейший показатель и здесь ситуация складывается совсем другая.
Так релейный стабилизатор, реагирует на изменения входящего напряжения со скоростью 10 миллисекунд, при этом ему не важно на сколько оно упало или выросло (в пределах своего рабочего диапазона 140-260В), он за эти доли секунды сменит режим и будет выдавать напряжение 200+/- 8%.
В это же время электромеханический стабилизатор имеет скорость стабилизации всего 10 Вольт в секунду. Таким образом, если падение напряжения составит 30 Вольт (входящее напряжение будет 190В), сервоприводной модели потребуется порядка 3 секунд чтобы на выходе было 200+/- 2%. Все эти 3 секунды, приборы подключенные к стабилизатору будут работать при пониженном напряжении.
По времени регулирования релейный стабилизатор значительно превосходит электромеханический.
ИТОГИ СРАВНЕНИЯ ХАРАКТЕРИСТИК релейного и электромеханического стабилизаторов
Как вы видите, если сравнивать основные характеристики, то получается, что релейный стабилизатор напряжения лучше электромеханического. Он в среднем на треть дешевле, а главное значительно быстрее реагирует на изменения напряжения в сети.
Казалось бы, зачем тогда вообще выпускать сервоприводные стабилизаторы, если значительно более доступные релейные модели по многим характеристикам их обгоняют?
Ответ прост, несмотря на все свои недостатки, в частности очень медленную скорость стабилизации напряжения, механические стабилизаторы имеют недостижимый для обычных релейных моделей показатель точности стабилизации.
Таким образом, сравнивать напрямую, какой стабилизатор лучше релейный или электромеханический некорректно, каждый из них предназначен для выполнения определенных задач, с которыми не справится соперник.
Зная эту информацию, давайте теперь рассмотрим, в каких случаях лучше всего купить релейный трансформатор, а в каких электромеханический.
В каких случаях лучше купить релейный стабилизатор напряжения
Релейный (сервоприводный) стабилизатор наиболее универсальное устройство и именно его покупают чаще всего на дачу или в квартиру. И даже достаточно низкая точность стабилизации, в стандартных бытовых условиях применения, не такая уж критичная характеристика, ведь ГОСТ 32144-2013, который регламентирует качество электроэнергии в наших квартирах и домах, допускает отклонения по напряжению до 10%.
Получается, что у вас вполне официально напряжение в розетке может быть на 10% ниже номинального, например, 198В, при этом погрешность стабилизации релейных моделей на уровне 8% уже не кажутся такой страшной цифрой. Особенно если учесть, что производители электрооборудования придерживаются того же госта при разработки своих устройств и практически любое из них безболезненно выдерживает напряжения на 10% большее или меньшее чем номинальное.
Более подробно о достоинствах электронных моделей и особенностях их работы читайте в нашей статье – «Что такое релейный стабилизатор напряжения»
В каких случаях лучше купить электромеханический стабилизатор напряжения
Главными преимуществами электромеханического стабилизатора являются его точность стабилизации и отсутствие скачков и искажений при переключении режимов.
Его можно рекомендовать к покупке тогда, когда к нему подключается чувствительное электронное оборудование – персональный компьютер, телевизор, лабораторные или измерительные приборы и многое другое в сетях, в которых не бывает резких скачков и падений напряжения. Так, например, это идеальный вариант если вы живете в городской квартире или даже деревне и из-за старости или недостаточной оптимизации ваши электрические сети выдают заниженное или завышенное напряжение , особенно если у вас нет соседа с мощнейшим сварочным аппаратом, работая которым он даёт просадку на всей линии.
Пусть механический стабилизатор несколько дороже, но позволит вашему оборудованию работать практически в идеальных условиях.
Тяжело посчитать возможную прямую выгоду от решения приобретения механического стабилизатора, но вы должны понимать, что даже один спасённый электроприбор или то что просто исправно проработает весь срок службы и даже больше, уже окупит с лихвой ту разницу в стоимости между релейной и электромеханической моделями.
Более подробно о достоинствах сервоприводных моделей и особенностях их работы читайте в нашей статье – «Что такое электромеханический стабилизатор напряжения»
Ну а если вы еще сомневаетесь, что лучше релейный или электромеханический стабилизатор и у вас есть аргументы в защиту одного или другого решения, расскажите об этом в комментариях к статье, особенно инетересно было бы узнать о вашем опыте использования стабилизатора в хозяйстве – это будет полезным многим.
Какой стабилизатор напряжения лучше: релейный или симисторный
Время прочтения: 5 мин
Дата публикации: 12-08-2020
Вопрос стабильного электропитания будет актуален всегда, так как факторов, влияющих на сетевое напряжение, довольно много. Часть из них является виной человека, а часть — результатом стечения обстоятельств по независящим ни от кого причинам. И не важно, живете ли Вы в квартире или на даче, сеть постоянно будет подвергаться перегрузкам, неблагоприятным метеорологическим условиям и многим другим негативным воздействиям. Какой бы ни была причина сетевых колебаний, их результат неизменен: некорректная работа оборудования или его выход из строя.
Лучше всего действовать превентивно и обеспечить защиту своих электроприборов, не дожидаясь неудачного стечения обстоятельств, из-за которых оборудование сгорит. Оптимальный вариант сделать это — установить стабилизатор напряжения. В бытовой сфере фигурирует три основных типа стабилизаторов: релейные, электронные и сервоприводные. Последние (их еще называют электромеханическими) не особо популярны из-за некоторых компромиссных моментов в работе, поэтому чаще всего пользователи обращают внимание на релейные и электронные (симисторные/тиристорные).
Какой стабилизатор напряжения лучше: релейный или симисторный? Все зависит от того, чего конкретно Вы хотите от стабилизатора. Попробуем разобраться, как работают данные типы стабилизаторов и какой из них выбрать.
Принцип работы ступенчатого стабилизатора
Как симисторный, так и релейный стабилизатор имеют схожий принцип работы, основанный на коммутации ступеней стабилизации. Ступень стабилизации можно представить как вывод автотрансформатора. Эти выводы находятся в разных частях обмотки и, соответственно, соответствуют разным коэффициентам трансформации. Представим ситуацию: на входе напряжение поднялось до 250В. Чтобы получить искомое значение 220В, надо найти вывод, коэффициент трансформации которого будет несколько ниже единицы. Так мы понизим напряжение до значения, близкого к 220В. И чем больше у трансформатора ступеней (выводов), тем меньше шаг регулировки между двумя ступенями и, как следствие, меньше отклонение от искомого значения 220В.
Таким образом, принцип работы ступенчатого стабилизатора заключается в том, чтобы своевременно фиксировать отклонения на входе и подбирать ту ступень стабилизации, при которой выход будет ближе всего к номинальному значению. За весь этот процесс отвечает автоматика стабилизатора, которая нас не сильно интересует в данном контексте. Куда важнее, посредством чего осуществляется подключение (коммутация) ступени. Тут у стабилизаторов напряжения релейного и симисторного типа начинаются различия. И об этих отличиях говорит само название. В релейном стабилизаторе напряжения коммутация ступеней осуществляется посредством электромагнитных реле, когда как симисторный аналог выполняет эту задачу при помощи полупроводниковых ключей — симисторов.
Чем отличаются релейные и симисторные стабилизаторы
Выше мы уже упомянули основное отличие электронного стабилизатора от релейного. Пройдемся по преимуществам и недостаткам того или иного решения:
- Долговечность. Электромагнитные реле состоят из подвижных контактов и якоря, который их перемещает, притягиваясь к намагниченной катушке. Любые подвижные элементы снижают надежность конструкции. К тому же, при каждой коммутации контакта реле возникает искра, приводящая к постепенному подгоранию контакта. Нагар — это одна из самых распространенных причин выхода реле из строя. Ресурс реле при максимальной нагрузке обычно составляет около 100 тыс коммутаций.
Полупроводниковые ключи подобными проблемами не страдают и имеют неограниченный срок службы.
- Шум. Нередко стабилизаторы напряжения устанавливаются в жилом помещении, в связи с чем одним из важных критериев может считаться бесшумность работы. Релейные стабилизаторы бесшумными быть просто не могут даже при наличии пассивной системы охлаждения. Каждое переключение ступени стабилизации будет сопровождаться легким щелчком, сравнимым с авторучкой, звук которой несколько приглушен корпусом прибора. Симисторы и тиристоры, ожидаемо, никакие звуковые эффекты не производят.
- Скорость. Как симисторы, так и реле срабатывают при подаче управляющего сигнала постоянного тока. Временем замыкания тиристора фактически можно пренебречь, посему скорость реакции электронных стабилизаторов обычно оценивается в пределах 20 миллисекунд. Причем, в эти 20 миллисекунд входит время на фиксацию входных колебаний и обработку информации. В случае с реле определенное время тратится на перемещение якоря.
Этот процесс очень быстрый, для глаза практически мгновенный, но на деле время реакции релейных стабилизаторов может достигать 100 миллисекунд (0,1с). Однако это время все равно считается очень быстрым и безопасным, особенно на фоне электромеханических аналогов.
- Цена. Пожалуй, это единственное преимущество релейных ключей перед полупроводниковыми. Стоимость одного реле во много раз ниже стоимости одного симистора. И чем выше мощность, тем больше эта разница.
Какой стабилизатор купить
И все же, какой стабилизатор напряжения лучше: релейный или симисторный? Если смотреть на характеристики, то симисторный стабилизатор по всем параметрам лучше. Но лучшим считается не тот стабилизатор, чьи характеристики превосходят, а тот, который за минимальную цену эффективно выполняет поставленную перед ним задачу.
Попробуем перефразировать сказанное выше на конкретном примере. Вы собираетесь защитить газовый котел, который установлен в отдельном помещении. Смысла переплачивать за симисторный стабилизатор не много, так как щелчки реле беспокоить не будут, а сам котел назвать очень чувствительным к колебаниям нельзя — ему хватит и базовой защиты. Другое дело, когда требуется защитить высокоточную чувствительную технику. Тогда лучше выбрать симисторный стабилизатор с большим количеством ступеней (релейные стабилизаторы обычно не отличаются большим количеством ступеней, чтобы снизить количество коммутаций при слабых сетевых колебаниях). В бытовой сфере симисторный стабилизатор может также пригодиться в случае его установки в жилом помещении.
Если Вы не знаете, какой стабилизатор подойдет именно в Вашем случае — проконсультируйтесь со специалистами.
от 5кВт до 10-15кВт. Купите с монтажом!
I. Релейные стабилизаторы – самый бюджетный тип
- Точность стабилизации: средняя/низкая
- Выходные помехи: высокие
- Скорость реакции: средняя
- Срок эксплуатации: 3-5 лет
- Уровень шума: средний
Самая простая технология стабилизации при помощи электромеханических реле. Рекомендуем использовать при редких проблемах с напряжением и в отсутствии дорогой бытовой техники и электроники в доме
II. Электромеханические стабилизаторы – высокая точность, но низкая скорость
- Точность стабилизации: высокая
- Выходные помехи: высокие
- Скорость реакции: низкая
- Срок эксплуатации: 2-3 года
- Уровень шума: средний
Регулировка напряжения при помощи механического щеточного привода. Рекомендуем использовать при редких и плавных отклонениях напряжения от нормальных 220В. Требуют регулярного обслуживания.
III. Электронные стабилизаторы напряжения – универсальное и надежное решение
- Точность стабилизации: высокая/средняя
- Выходные помехи: низкие
- Скорость реакции: высокая
- Срок эксплуатации: 10-15 лет
- Уровень шума: низкий
Регулировка осуществляется при помощи силовых быстродействующих полупроводников — тиристоров или симисторов. Современные универсальные быстродействующие стабилизаторы напряжения, решающие большинство проблем с просадками и скачками напряжения.
IV. Инверторные стабилизаторы – при очень плохой сети
- Точность стабилизации: максимальная
- Выходные помехи: низкие
- Скорость реакции: максимальная
- Срок эксплуатации: 8-10 лет
- Уровень шума: низкий/средний
Стабилизаторы сделанные по технологии двойного преобразования. Максимальная точность стабилизации и исправление формы синусоиды. Рекомендуется при низком качестве питающей сети с одной стороны и наличии чувствительной электроники с другой. Чувствительны к перегрузкам.
V. ИБП двойного преобразования – в случае полных отключений и морганий сети
- Точность стабилизации: максимальная
- Выходные помехи: низкие
- Скорость реакции: максимальнвя
- Срок эксплуатации: 8-10 лет
- Уровень шума: средний
- Автономия: от 10 мин.
до 24 часов
Источники бесперебойного питания имеют в своём составе внутренние или внешние аккумуляторы, которые позволяют продолжить электропитание всей нагрузки в доме при морганиях сети, критически низком или полном пропадании напряжения. Часто устанавливаются вместо генераторов.
Закажите профессиональную консультацию
Заполните, пожалуйста, нашу форму и в ближайшее время мы вам обязательно перезвоним
Лучшие стабилизаторы напряжения 220В для дома: вопрос-ответ
Как правильно подобрать мощность стабилизатора?
Смотрите наше видео на эту тему:
Таблица для подбора мощности по номиналу вводного автомата:
Номинал вводного автомата | Максимальная полная мощность с округлением (cos φ=0,8), ВА | Рекомендуемая мощность стабилизатора, ВА | Рекомендуемая мощность при напряжении ниже 180В, ВА |
10А (2,5кВт) | 2 800 | 3 000 | 3 500 |
16А (4кВт) | 4 500 | 4 500 – 5 000 | 6 000 |
20А (5кВт) | 6 200 | 6000 – 6500 | 7 500 |
25А (6,2кВт) | 7 000 | 7 000 — 8 000 | 10 000 |
32А (8кВт) | 10 000 | 9 000 – 10 000 | 12 000 |
40А (10кВт) | 11 100 | 11 000 – 12 000 | 14 000 |
50А (12,4кВт) | 14 000 | 14 000 – 15 000 | 16 000 |
63А (15,7кВт) | 17 500 | 18 000 – 20 000 | 20 000 |
Следует устанавливать три однофазных или один трехфазный стабилизатор?
Подробный ответ в нашем видео:
youtube.com/embed/YHgYjkPnljk» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>Как можно расположить стабилизаторы и где их лучше устанавливать?
Как правило, все однофазные модели имеют возможность монтажа на стену, крепление часто идёт в комплекте. Большинство моделей имеют возможность напольной установки или на специальную стойку.
Место установки рекомендуем выбирать вблизи основного электрощита, но при возможности проложить силовые линии по дому место может быть иным. В помещении не должно быть повышенной влажности (до 80%), образования конденсата, строительной пыли. Максимальная температура эксплуатации – в среднем не более +40С.
Существуют варианты установки стабилизаторов в специальные климатические шкафы уличного исполнения.
Лучше ставить отдельные маломощные стабилизаторы напряжения на разные потребители или один мощный на всю группу?
Чаще всего, стабилизаторы малой мощности, которые распространены в продаже в сетевых магазинах и на строительных рынках принадлежат низкоточному релейному типу. Мощные стабилизаторы на весь дом, особенно электронные и инверторные дают существенно более высокое качество напряжения. Лучше сделать выбор в пользу последних.
При каком значении напряжения ниже или выше 220В следует задуматься об установке стабилизаторов?
По ГОСТу напряжение на вводе в дом не должно отклоняться более, чем на 10%. На данный момент есть два стандарта – 220В (допуск: 198 – 242В) и 230В (207 – 253В). На практике же во многих коттеджных поселках напряжение просаживается, скачет или является повышенным. Самые частые причины этого:
- Перегруженные и старые трансформаторные подстанции
- Большая удаленность от подстанции и/или недостаточное сечение силовых кабелей
- Несбалансированная нагрузка по фазам и слабый ноль
Можно выделить следующие виды проблем:
- Напряжение ниже ГОСТа. При значениях ниже 180В выходят из строя холодильники и кондиционера. В группу риска попадают насосы.
- Постоянно повышенное напряжение – более 245В (или 255, если трансформатор на 230В). Напряжение выше 265 приводит к моментальному выходу из строя электроники.
- Плавающее напряжение. В этом случае к вечеру напряжение может падать ниже нормы, а днем быть в допуске. Как подвид этой проблемы – изменение напряжения волнами, период которых может быть достаточно коротким (до нескольких минут).
- Импульсное изменение: короткие провалы или всплески напряжения. Моргающее и плавающее напряжение негативно сказывается на любой бытовой технике.
Таким образом, если фиксируются отклонения от ГОСТа, есть признаки плавающего или скачущего напряжения следует задуматься об установке стабилизаторов.
Есть ли шум при работе стабилизаторов?
Уровень шума зависит от типа и модели. Релейные стабилизаторы все «щелкают» при плавающем напряжении. В электромеханических шум издает привод. Электронные стабилизаторы, как правило, имеют естественное охлаждение и в нормальных режимах работают бесшумно. Инверторные модели Volter бесшумные, серия ИнСтаб имеет принудительное воздушное охлаждение (уровень шума аналогичен работе системного блока ПК).
Что делать при сильно пониженном напряжении, когда фиксируются значения 150-140В и менее?
Эту ситуацию можно считать аварийной. Перед покупкой стабилизаторов мы рекомендуем:
- Проверить надёжность контакта фаз и в особенности нулевого проводника в основных электрощитах.
- Провести аудит вашего питающего кабеля на предмет его целостности и достаточности сечения.
- Обратиться в вашу обслуживающую организацию, администрацию поселения или местному электрику с просьбой решить эту проблему.
Если проблема не решается, то следует обратить внимание на on-line ИБП с аккумуляторами, т.к. при минимальных значениях входного напряжения и появления высокой нагрузки в доме стабилизаторы напряжения будут просто отключаться.
Что такое гибридные стабилизаторы напряжения?
Некоторые производители комбинирует различные типы. Так, например, Энергия серии Hybrid – это комбинация сервопривода и электромеханических реле. Вольт серии ГИБРИД – это сочетание твердотельных реле (полупроводников) и электромеханических.
Исправляют ли стабилизаторы частоту напряжения и его форму? Вопрос особенно актуален при работе с генераторами.
Ни один из типов стабилизаторов не исправляет частоту питающей сети. Форму напряжения («синусоиду») корректируют только инверторные стабилизаторы. Мы рекомендуем устанавливать стабилизаторы сразу после вводного автомата, после схемы АВР генератора.
Примеры комплексных проектов
При необходимости мы решаем вашу задачу комплексно. По-мимо стабилизаторов напряжения смонтируем ИБП или инвертор на котел или группу потребителей, на фазу или на весь дом. Установим генератор с ручным или автоматическим запуском. Исправим ошибки или полностью переберем ваш электрощит.
Заказать выезд инженера на объект
В процессе осмотра инженер произведет все необходимые замеры и расчеты, проконсультирует, а затем предложит варианты решения вашей задачи. В качестве бонуса будет произведен аудит вашего электрощита с выдачей рекомендаций. Цена за выезд – 5т.р., но при заключении договора на поставку и монтаж оборудования выезд – бесплатный.
Какой стабилизатор напряжения выбрать. Лучшие стабилизаторы напряжения для дома
Стабилизаторы бывают однофазными и трехфазными, а также цифровыми и электромеханическими (латерными).
В зависимости от типа питающей сети стабилизаторы подразделяются по значению выходного напряжения на однофазные (220 В) и трёхфазные (380 В). Выбор зависит от того, как напряжение подведено в дом. Если подведено однофазное напряжение, подойдет только однофазный стабилизатор. Если к вашему дому подведено трехфазное напряжение, есть 2 варианта: купить один трехфазный стабилизатор или три однофазных.
Цифровые или электронные стабилизаторы, в свою очередь, делятся по способу коммутации на релейные и тиристорные.
Релейные стабилизаторы – самые популярные, т. к. имеют ряд преимуществ:
— надежны
— выдерживают перегрузки
— долговечны
— быстро реагируют на перепады
— принимают входное напряжение в любом диапазоне
— не вносят радиопомех, поэтому подходят для использования с самыми разными электроприборами
— компактны – могут быть установлены в квартирах
Тиристорные модели используют для работы с оборудованием, требующим высокой точности выходного напряжения, например, медицинским. Но они менее надежны и не так удобны в эксплуатации. Еще один минус – цена самого стабилизатора и ремонта в случае поломки. Для работы телевизора, холодильника и другой бытовой техники чрезмерная точность не нужна – все эти приборы нормально работают при напряжении 220 В ± 10%.
Электромеханические стабилизаторы латерного типа отличаются высокой точностью (2-3 %) и плавной регулировкой напряжения, но гораздо медленнее срабатывают при изменениях в электросети. Такие модели не приспособлены к перегрузкам и не отличаются надёжностью, требуют регулярного техобслуживания, имеют сравнительно большие размеры. Доступная цена – вот главное преимущество электромеханических стабилизаторов.
Мощность
Чтобы сделать правильный выбор, нужно еще учитывать мощность стабилизатора. Для бесперебойной работы стандартного набора «чайник-холодильник-телевизор-плита» мощности 10-15 кВт более, чем достаточно. Для точного расчета следует сложить мощность всей домашней техники, которую вы собираетесь подключать к стабилизатору. Учитывайте пусковые токи некоторых приборов, например, кондиционера, холодильника, микроволновки. Мощность этих приборов при запуске превышает номинальную в несколько раз. Если не учесть данного факта, при включении техники с высоким пусковым током остальные приборы могут отключиться – сработает защита стабилизатора от перегрузки.
Как выбрать стабилизатор напряжения — как самостоятельно правильно выбрать стабилизатор напряжения для частного дома
Известно, что напряжение электрической сети меняется в зависимости от местонахождения объекта, так что оно может варьироваться в самых разных пределах. Большинство загородных домов и дач находится на большом расстоянии от трансформаторных станций – это значит, что частые падения мощности сети неминуемы. Регулировать скачки электрического тока можно с помощью стабилизатора напряжения. Но как же его выбрать? Для этого мало уметь подсчитывать вольты, нужно также разбираться в принципе работы устройства.
Какой стабилизатор напряжения выбрать?
Как правило, напряжение электросети в средней точке равняется 220в. При большом количестве потребителей тока напряжение, фиксируемое на подстанции, сильно возрастает. Когда мощность скачкообразно меняется, это может привести к выходу из строя бытовых электроприборов. Только стабилизатор напряжения может регулировать мощность электросети, но перед владельцами дачи и частного дома стоит важная задача – правильно выбрать стабилизирующее устройство из множества видов.
Выбирая стабилизатор для квартиры или частного дома, важно обращать внимание не только на то, какое устройство лучше и популярнее на сегодняшний день. Нужно, прежде всего, обратить внимание на следующие моменты:
- какой стабилизатор напряжения работает надежно
- как не переплатить на лишние киловатты
- стоимость устройства
Виды стабилизаторов
Первым делом необходимо понять, какой выбор стабилизаторов предлагается потребителям. Большинство приборов, отвечающих за регулировку мощности электросети, работает одинаково и ничем друг от друга не отличается. У них одинаковое устройство, электронная прошивка, а также одинаковый способ переключения витков трансформатора. И все-таки стабилизаторы напряжения можно разделить на три вида, отличающиеся друг от друга способом регулирования мощности. К ним можно отнести:
- устройства с сервоприводом
- релейные регулировщики
- электронные приборы
Сервоприводные устройства регулируют напряжение при помощи витков трансформатора – они их просто меняют, используя специальный бегунок. Преимущество – низкая цена. Недостаток – наличие механических деталей, которые могут выходить из строя. Часто владельцы дач и квартир жалуются на поломку угольно-графитовых узлов. Другая распространенная поломка – выход из строя сервоприводного мотора. Можно сказать, что это самый ненадежный стабилизатор из всех существующих на сегодняшний день.
Лучше всего обратить внимание на релейные стабилизаторы. Они работают на основе блока, переключающего витки трансформатора. Преимущество – доступная цена. Недостаток – короткий срок службы. Например, очень часто залипают контакты. Для загородного дома гораздо эффективнее будет электронный стабилизатор напряжения. Преимущества – надежность, практичность, высокая работоспособность и долговечность. Регулировка электросети происходит с помощью ключей-тиристор. Другие отличия – бесшумная работа, оперативное реагирование на скачки. Минус – высокая стоимость.
Какую мощность способны выдержать стабилизаторы?
Чтобы подсчитать мощность, необходимо заглянуть в паспорт бытовых электроприборов, где указаны ватты. Другой важный момент – присутствие электрических двигателей, потребляющих большое количество тока. Наконец, нужно обратить внимание на коэффициент трансформации. В идеале следует выбрать стабилизатор напряжения с запасом на 30 %. Правильно определить общую мощность сможет только опытный специалист с высокой квалификацией. То же самое касается и подключения стабилизатора напряжения для дачи или квартиры.
Трёхфазные и однофазные стабилизаторы
Многие владельцы домов теряются в выборе – трехфазный или однофазный стабилизатор приобрести? Конечно, если электросеть однофазная, то подойдут однофазные стабилизаторы напряжения. Если же есть трёхфазный потребитель электрического тока, то выбор будет очевидным. Бывают случаи, когда нагрузка является однофазной, тогда можно применить сразу несколько однофазных стабилизаторов. Такой способ снабжения дома регулировщиками мощности будет стоить намного дешевле. Прежде чем выбрать устройство, лучше всего проконсультироваться с опытным мастером.
Как определить число фаз? Это можно сделать, обратившись к месту, где соединены провода. Нужно посмотреть на число проводов. Одной фазе соответствует два провода, трехфазной электросети – четыре провода. Если же количество проводов подсчитать трудно, то можно обнаружить тип электросети по розеткам. Трехфазные розетки оснащены особыми гнездами с пятью контактами. Если в доме есть помещения с очень мощной техникой, то электросеть должна быть трехфазной. Впрочем, точный ответ может дать только опытный электрик.
Еще один важный момент – диапазон регулировки. Для решения этой задачи понадобится специальный бытовой прибор, подсчитывающий вольты – вольтметр с измерительной шкалой до 380в или 400в. Необходимо сделать некоторые исследования, учитывая колебания мощности в различные погодные условия (в холода напряжение падает). Если исследования бытового вольтметра, подсчитывающего вольты, показали 220в или 380в, лучше всего выбрать стандартный стабилизатор. Если же были замечены сильные перепады, то следует приобрести стабилизатор напряжения с расширенным диапазоном.
Практические советы в выборе
Чтобы максимально точно определить вид стабилизатора и выбрать модель для квартиры или дома, нужно подсчитать общую сумму мощностей и вольты. Необходимо правильно измерить мощность фена для волос, плиты, утюга, кофеварки, телевизора и прочих электроприборов, которые находятся на даче. Затем мощность суммируется, и при выборе устройства учитывается полученный результат. Нужно учесть, что такие мощные приборы как холодильник требуют большого напряжения. Даже если в паспорте написано 380в, следует прибавлять 20%. Другой важный момент – разделение приборов на стационарные и временные. Также следует не забывать про однофазную и трехфазную электросеть. С источниками света также лучше использовать трехфазные стабилизаторы.
Многие владельцы дач и домов задаются вопросом об условиях установки стабилизаторов для регулировки мощности электросети. Вся эта информация, как и допустимые вольты, фиксируется в эксплуатационном паспорте устройства. Кроме вольтов и диапазона регулировки значение имеет шум, издаваемый стабилизатором. Если устройство устанавливается в техническом помещении, то он не сможет навредить или помешать. Но для жилого помещения лучше всего выбрать бесшумный прибор. Для небольшого дачного домика с общей мощностью приборов, равной 220в, подойдет самый недорогой стабилизатор.Для сплит систем подойдет трехфазное устройство.
Какой стабилизатор напряжения лучше: релейный или электромеханический
У многих в квартире были перебои с напряжением в электрической сети. В это время могут сгореть несколько ламп освещения, может выйти из строя стиральная машина или компьютер. Выход из такой ситуации напрашивается один – приобрести и установить стабилизатор напряжения.
Основным критерием выбора домашнего стабилизатора является мощность прибора. Ее величина должна быть выше суммарной мощности всех ваших бытовых приборов. Стабилизатор напряжения – это прибор, который корректирует параметры электрической энергии до номинальных значений при значительных колебаниях питания в сети.
Виды стабилизаторов
Чтобы разобраться и сделать оптимальный выбор стабилизатора, необходимо рассмотреть наиболее популярные виды стабилизаторов и их особенности.
Релейный стабилизатор напряжения
Сегодня невозможно представить квартиру, в которой не было бы бытовой техники. Каждое устройство требует защиты от перепадов напряжения в бытовой сети. Одним из таких приборов защиты является релейный стабилизатор напряжения.
Благодаря такому прибору можно создать комфортные условия работы электрических устройств. Уровень напряжения в номинальном режиме должен составлять 220 В. Релейный вид стабилизатора встречается во многих областях. Это популярный вид защитного прибора, так как имеет простое устройство.
Конструктивные особенности
Перед применением прибора требуется изучить, как он устроен и работает. Релейный стабилизатор включает в себя автотрансформатор и схему электронных элементов, управляющих его действием. В корпусе кроме этого имеется реле. Стабилизатор релейного типа считается повышающим, так как при пониженном напряжении прибор осуществляет повышение напряжения.
Возрастание напряжения будет осуществляться путем подключения дополнительной обмотки. Чаще всего в трансформаторе есть 4 обмотки. При превышении напряжения в сети стабилизатор снижает излишнее напряжение. Схема стабилизатора релейного типа состоит из:
- Повышающий трансформатор.
- Управляющий микроконтроллер.
- Реле.
Это основные элементы релейного стабилизатора. Также устройство может содержать вспомогательные элементы, например, дисплей.
Принцип действия
Разберемся в процессе функционирования стабилизатора релейного типа. Электронная система измеряет параметры входящей электроэнергии. После считывания данных прибор сравнивает эти параметры с величинами номинального режима.
Прибор автоматически производит подключение необходимой обмотки трансформатора для достижения нужных параметров сети. Работа релейного стабилизатора довольно простая. Прибор регулирует параметры сети по ступеням, в результате чего при очередной ступени напряжение изменяется на конкретную величину. Бывают ситуации, когда уровень напряжения не соответствует норме даже после корректировки. Такие ступенчатые регулировки могут также вызвать перепады напряжения.
Если подробно разобраться в принципе действия, то можно понять, что прибор быстро выбирает нужные обмотки. Такие ступенчатые скачки параметров считаются незначительными. Они станут заметнее, если на входе будут наблюдаться подобные скачки напряжения. При подключении к сети высокочувствительных устройств при сильных перепадах напряжения устройства выйдут из строя.
Недобросовестные производители могут запрограммировать стабилизатор таким образом, что на его дисплее всегда будет показывать значение 220 В.
Чаще всего релейный стабилизатор справляется с перепадами сети за 0,15 с. Такой прибор может отключить питание выходным током, когда на входе возникли значения тока наименьшего допустимого значения. После нормализации напряжения прибор снова подключится к работе. Напряжение восстанавливается за 0,6 с.
Достоинства
Основными преимуществами релейной модели стабилизатора можно назвать:
- Малые габаритные размеры, так как трансформатор имеет только функцию повышения напряжения.
- Большой интервал значений напряжения.
- Значительный диапазон рабочих температур. Многие приборы нормально работают при температуре -40 +40 градусов.
- Низкий уровень шума.
- Допускается перегрузка до 110%.
Многие изготовители приборов утверждают, что их продукция способна функционировать много лет.
Недостатки
В работе релейных моделей стабилизаторов есть недостатки, которые обусловлены его методом работы, схемой прибора. Слабым звеном его конструкции считается реле. Если изготовитель установил некачественное реле, то оно может стать причиной неисправности прибора. Также при переключении режимов возникают щелчки и шумы.
Другим значимым недостатком является ступенчатое действие устройства выравнивания напряжения. При переключении с одной обмотки на другую напряжение может значительно изменяться, образуя некоторые скачки.
Недорогие модели имеют слабую мощность, которая не больше 30% от мощности бытовых устройств.
Правила пользования стабилизатором
При вашем выборе релейного типа стабилизатора, необходимо регулярно проводить его обслуживание, в том числе ежегодно тщательно его осматривать внутри корпуса. При осмотре нужно обращать внимание на:
- Надежность крепления соединений проводников.
- Уровень охлаждения и циркуляции воздуха в корпусе прибора.
- Имеются ли повреждения.
- Точность работы указателей измерения.
При обнаружении слабых соединений, пыли, необходимо выключить из сети стабилизатор и произвести его обслуживание, очистив его и затянув все крепления контактов. Помещение, в котором находится стабилизатор напряжения, должно проветриваться и быть сухим. Влажность в помещении не должна быть более 80%. При работе в корпусе стабилизатора отверстия для вентиляции должны иметь доступ воздуха.
Электромеханический стабилизатор
Ни для кого не секрет, что бытовые сети питания сегодня не могут обеспечить стабильную эксплуатацию электрических устройств в доме. Перепады и скачки напряжения вполне можно ожидать от сети питания. Для решения этих задач как нельзя лучше подходит электромеханический вид стабилизатора напряжения, так как он стал наиболее популярным на рынке бытовых приборов защиты.
Этот прибор является повышающим трансформатором, который самостоятельно осуществляет регулировку напряжения в сети, в отличие от релейного стабилизатора.
Классификация
Основным критерием деления на классы электромеханических стабилизаторов стали параметры напряжения. Приборы бывают 1-фазными и 3-фазными. Первые применяются чаще в частных постройках и офисах, а трехфазные модели в больших организациях, в промышленности. На сегодняшний день у людей есть возможность строительства больших домов, коттеджей, в которых находится множество бытовых устройств, которые требуют защиты от перепадов напряжения сети.
По конструктивному исполнению стабилизаторы бывают настенными, напольными, настольными. Крепиться могут в любых положениях.
Другим фактором является мощность прибора. Сейчас изготовители предлагают большой выбор моделей. Имеются маломощные приборы до 500 кВА, а также повышенной мощности до 20000 кВА. Нужно сказать, что устройства на 220 и 380 В имеют отличия в числе трансформаторов, расположенных в корпусе устройства.
Преимущества:
- Широкий интервал напряжения входа.
- Повышенная точность выхода.
- Не чувствителен к рабочей частоте.
- Отсутствие шума.
Недостатки:
- Присутствуют движущиеся части.
- Необходимость периодической замены щеточного блока.
- При снижении напряжения до 180 В, нет гарантии нормальной работы.
- 1-фазные модели не могут работать при пониженной температуре.
- Малая скорость работы.
Советы по выбору стабилизатора
При выборе учитывайте следующие факторы:
- Модель стабилизатора по числу фаз сети. Если в вашей трехфазной сети работают 1-фазные устройства, то для защиты от перепадов напряжения лучше применять три отдельных однофазных стабилизатора.
- Мощность прибора. При определении этого параметра нужно учесть, что некоторые устройства имеют асинхронные двигатели, у которых высокие пусковые токи.
- Точность стабилизации для защиты бытовых устройств, его быстродействие.
- Наличие вспомогательных функций.
- Условия работы прибора.
- При выборе прибора необходимо учесть схему разводки проводов цепи питания.
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения.Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья — ваше руководство по выбору регулятора (ов) напряжения для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : Выходное напряжение ниже входного
- Повышающий : Выходное напряжение больше входного
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : высокая энергоэффективность, но более сложная и дорогая, а на выходе больше шума.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение меньше входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторынамного дешевле и проще в использовании, чем импульсные регуляторы, поэтому, как правило, они должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определение рассеиваемой мощности
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному току.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в случае, приведенном выше, если вы сейчас используете ток нагрузки только 100 мА, тогда рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? »
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала вычислите, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте расчетную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° С.
- ½ ватта нагревается до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.
Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это ни в коем случае не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания проходит прямо через выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень небольшой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, популярные стабилизаторы серии 7800 имеют паспортное напряжение 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Разница между входным и выходным напряжением мала
- У вас низкий ток нагрузки
- Требуется исключительно чистое выходное напряжение
- Дизайн должен быть максимально простым и дешевым
Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Импульсные регуляторы
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату, используя простой линейный регулятор, а в этом более глубоком курсе я проектирую индивидуальную плату, используя более сложный импульсный стабилизатор.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторыобладают высокой эффективностью даже при очень больших перепадах между входом и выходом.
КПД равен выходной мощности, деленной на входную. Это соотношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе индуктивность используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Понижающие регуляторы
Допустим, вы питаете свой продукт от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.
Для этого вы должны использовать повышающий стабилизатор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также убирает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутационные шумы, обязательно обратите внимание на коэффициент отклонения источника питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 — Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.
Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, то используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте загрузить бесплатно PDF : Окончательное руководство по разработке и продаже нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
Как правильно выбрать ИС линейного стабилизатора напряжения для современных схем
Регуляторы напряженияявляются неотъемлемой частью любой электронной конструкции, вы можете не заметить, но более 90% проектов / продуктов в области электроники требуют наличия какого-либо регулятора напряжения для функциональной работы.Что делает их одними из наиболее часто используемых и легкодоступных электронных компонентов для различных приложений.
Но часто возникает ситуация, когда ваш лучший в своем классе регулятор напряжения не соответствует конкретным требованиям для конкретного приложения, и после небольшого поиска регулятора напряжения в mouser, element14 или Digikey вы попали в ситуацию, когда вы не можете решить. как выбрать стабилизатор напряжения IC для вашей электронной конструкции.
Итак, в этой статье мы узнаем о некоторых из самых дешевых и часто используемых стабилизаторов напряжения , доступных на рынке.Кроме того, я подробно покажу вам, какие параметры необходимо учитывать перед выбором регулятора напряжения для конкретного приложения. Наконец, я вручную выберу несколько крутых Top 10 Modern Linear Regulator IC , которые можно использовать как современную замену старым LM7805, LM317, AMS1117 и т. Д., А также будет краткое описание для каждого из них.
Выбор правильного типа регулятора для вашей схемотехники
Перед тем, как выбрать микросхему регулятора напряжения, вам необходимо сначала установить самые основные параметры, хотя существуют и другие критические параметры, на данный момент мы сосредоточимся на трех основных: входное напряжение , выходное напряжение и ток нагрузки .
Зная входное и выходное напряжение, вы можете определить входной и выходной ток. Зная все эти параметры, вы можете легко рассчитать входную и выходную рассеиваемую мощность и определить, какой тип регулятора напряжения вам нужен для вашего конкретного применения.
Говоря о типах регуляторов напряжения , как вы все знаете, существует только два основных типа регуляторов напряжения: это импульсные регуляторы и линейные регуляторы , и они также подразделяются на повышающие и понижающие . Регуляторы .Для лучшего понимания ниже представлена подробная блок-схема.
Если вы ищете выходное напряжение ниже входного, просто выберите линейный стабилизатор напряжения, потому что линейный стабилизатор напряжения дешевый и его легко найти на рынке, поскольку он часто используется во многих приложениях
Если вы смотрите на выходное напряжение, большее, чем входное, тогда просто используйте импульсный стабилизатор, по-видимому, если ваша рассеиваемая мощность очень высока, что означает, что ваш выходной ток находится в нескольких элементах, в этой ситуации вы можете выбрать импульсный стабилизатор. вместо. Импульсные регуляторы напряжения более эффективны, чем линейные регуляторы.
Расчет мощности и тепловыделения для повышения эффективностиЛинейное напряжение дешевое, простое в использовании и легко доступное, но основным недостатком линейного регулятора является рассеиваемая мощность, если ее не учитывать внимательно, это может привести к быстрому расходу заряда батареи (для приложений с питанием от батареи) или к перегреву, что может привести к необратимому повреждению устройства.Чтобы лучше понять эту концепцию, давайте проясним ситуацию на нескольких примерах,
Предположим, у нас есть входное напряжение 12 В и выходное напряжение 3,3 В, разница напряжений составляет 12 В — 3,3 В = 8,7 В. Теперь предположим, что ток нагрузки составляет 500 мА, а в другом сценарии ток нагрузки составляет 100 мА.
В первом сценарии регулятор должен рассеивать 8,7 В * 0,5 А = 4,35 Вт мощности в виде тепла, а это очень много для любого регулятора на 3,3 В.
Во втором сценарии регулятор должен рассеивать 8.7 В * 0,05 А = 0,43 Вт, с чем легко справится любой хороший стабилизатор на 3,3 В.
Другой ключевой аспект, на который следует обратить внимание, известен как термическое сопротивление , он определяется как «-JA», а его единица измерения записывается как ° C / Вт. А теперь вы спрашиваете, что вообще это за параметр «Θ-JA»?
Он определяет, насколько будет нагреваться ИС (выше температуры окружающей среды), чтобы рассеять один ватт мощности. Умножение мощности на «Θ-JA» даст вам повышение температуры выше температуры окружающей среды.
Низкое падение напряжения (LDO) для низковольтных батарей
Чтобы преодолеть некоторые из основных проблем в линейном регуляторе, были введены LDO и импульсные регуляторы. Как следует из названия, LDO — это тип регулятора с очень низким падением напряжения. Вы можете узнать больше о стабилизаторах напряжения с низким падением напряжения, перейдя по ссылке на статью.
Но теперь остается вопрос: что вообще означает с низким падением напряжения ?
Чтобы понять концепцию падения напряжения, давайте возьмем на примере наиболее популярные регуляторы серии 78XX, такие как микросхемы регуляторов напряжения LM7805 или LM7809.Просто взглянув на таблицу 78-й серии, вы увидите, что у этой серии регуляторов есть падение напряжения 2 В. Это означает, что регулятор будет работать правильно только тогда, когда входное напряжение на 2 В выше выходного напряжения.
Если вы думаете, что 2 В — это не так много, вы снова ошибаетесь, если вы потребляете значительный ток с падением напряжения на 2 В. Допустим, вы потребляете ток 500 мА, затем вы тратите 1 Вт мощности на регулятор, а это большая потеря мощности для регулятора 7805.
Более новые наиболее эффективные LDO имеют очень низкое падение напряжения, которое может быть менее 200 мВ при полной нагрузке. Вот почему такие LDO могут обеспечивать в 10 раз больший выходной ток при 10 раз меньшей рассеиваемой мощности. Список таких LDO будет рассмотрен далее в статье.
Лучшие 10 современных ИС линейных регуляторов напряженияHT7333-A от Holtek Semiconductor
HT7333-A — это промышленный классический, очень дешевый однокристальный стабилизатор с малым падением напряжения с максимальным входным напряжением 12 В, и выходным напряжением , равным 3.3В . С допуском на выходное напряжение 3% эта микросхема может выдерживать максимальный выходной ток 250 мА .
Это очень часто используемый чип, который используется в различных продуктах и поставляется в корпусе TO-92, который представляет собой сквозную версию. Версия для поверхностного монтажа также доступна в пакете SOT-89. Последние две цифры номера детали представляют собой выходное напряжение. Итак, HT73 33 означает 3,3 В, также есть другие версии с фиксированным выходом, доступные для этого чипа, которые варьируются от 1.8В — 5В. Пожалуйста, обратитесь к таблице данных для получения дополнительной информации.
Приложения включают оборудование с батарейным питанием, регулятор напряжения для микроконтроллера и микропроцессора, оборудование для беспроводной связи и многое другое. Этот чип стоит 0,49 доллара за одну штуку, а выпадает всего за 0,016 доллара за за всю катушку из 3000.
Название детали: HT7333
Лист данных: HT7333 Лист данных
AP2112K, компания Diodes Incorporated
AP2112K — это немного современный, однокристальный, очень дешевый стабилизатор со сверхнизким падением напряжения, который имеет входное напряжение , равное 6.5 В и выходное напряжение 3,3 В и имеет точность выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток мА, при типичном падении напряжения 250 мВ. Он имеет встроенную защиту от короткого замыкания и специальный вывод для включения или отключения микросхемы извне.
Он имеет ток покоя 55 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Он может быть сконфигурирован как вторичный регулятор в системе регулирования, состоящей из двух частей.Эта ИС также имеет большой диапазон фиксированных выходных напряжений и поставляется в крошечном корпусе SOT23-5. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей.
Приложениявключают в себя эффективные регуляторы напряжения, блоки питания для микроконтроллеров, блоки питания для ЖК-дисплеев и ноутбуков. Этот чип стоит 0,47 доллара за единицу и падает до 0,098 доллара за всю катушку из 3000.
Название детали: AP2112K
Срок эксплуатации: AP2112K Лист данных
NX1117CE от NXP Semiconductors
NX1117CE также является отраслевым стандартом, очень дешевая, легко доступная однокристальная и, безусловно, наиболее часто используемый LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение 20 В, макс @ 6 мА и выходное напряжение из 3.3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток , равный 1 А, при типичном падении напряжения 500 мВ.
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа.
Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Этот чип стоит 0,37 доллара за одну штуку, а упадет с 0,067 доллара до за всю катушку из 3000.
Название детали: NX1117CE
Лист данных: NX1117CE Лист данных
LP2985 от Texas Instruments
LP2985 — это новый, очень недорогой, однокристальный стабилизатор со сверхнизким падением напряжения, входное напряжение которого составляет не более 16 В, , а выходное напряжение — 3.3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может работать с максимальным выходным током , равным 150 мА, при типичном падении напряжения 280 мВ.
Он имеет встроенную защиту от короткого замыкания и специальный вывод байпаса, в который можно добавить конденсатор емкостью 10 нФ для сверхмалошумной работы. Он имеет ток покоя 850 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Он поставляется в крошечном корпусе SOT23-5, поэтому его можно использовать в некоторых из самых густонаселенных сверхмалых приложений, все эти функции делают его идеальным кандидатом в качестве вторичного регулятора после первичного импульсного регулятора.
Он также имеет большой диапазон постоянных выходных напряжений. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей. Приложения включают портативные устройства, цифровые камеры и видеокамеры, проигрыватели компакт-дисков и многое другое. Этот чип стоит 0,51 доллара за единицу и падает до 0,298 доллара за всю катушку из 3000.
Название детали: LP2985
Срок эксплуатации: LP2985 Лист данных
MIC29302WU от Microchip
MIC29302WU также является отраслевым стандартом, очень дешевым, сильноточным LDO (Low Dropout Regulator) (Low Dropout Regulator), который имеет входное напряжение макс. 26 В и выходное напряжение 3.3 В (для версии 3,3 В) и с гарантированной точностью выходного напряжения 1%, этот чип может выдерживать максимальный выходной ток , равный 3 А, при типичном падении напряжения 500 мВ. В качестве дополнительной функции эта ИС предоставляет дополнительный логический уровень для включения и вывод состояния. Вывод EN предназначен для управления выходом регулятора, а вывод состояния — для состояния ИС.
Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Функции защиты включают перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков переходного напряжения.С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, микропроцессорное питание, зарядное устройство, автомобильную электронику и многое другое. Этот чип стоит $ 2,14 за одну штуку и падает до $ 1,61 за всю катушку из 3000.
Название детали: MIC29302WU
Лист данных: MIC29302WU Лист данных
LM1084 от Texas Instruments
LM1084 также является отраслевым стандартом, очень дешевым, однокристальным, сильноточным LDO (стабилизатор с малым падением напряжения), который имеет переменное входное напряжение макс. 25-29 В, в зависимости от выходного напряжения он имеет три варианта один рассчитан на 3,3 В, второй — на 5 В, а также есть регулируемый вариант, в котором выходное напряжение может быть установлено с помощью комбинации резисторов обратной связи.Это чудовищный LDO с выходным током мощностью 5А .
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпусов эту ИС можно использовать в качестве первичного стабилизатора напряжения для множества приложений. Для получения информации о различных вариантах выходного напряжения и корпусе см. Техническое описание этого чипа.Этот LDO также производится китайской компанией под названием HGSEMI , но таблица данных на мандарине; Если вы зритель из Китая или умеете читать на мандарине, вы также можете проверить эту альтернативную часть. Цена этого регулятора значительно снижается с китайской версией.
Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Этот чип стоит 2,65 доллара за единицу и упадет до 1 доллара.13 для всего барабана 3000.
Название детали: LM1084
Лист данных: LM1084 Лист данных
AZ1084C, компания Diodes Incorporated
AZ1084C также является отраслевым стандартом, очень дешевым, сильноточным LDO (стабилизатор с низким падением напряжения), который имеет входное напряжение не более 13,2 В и выходное напряжение 3,3 В , и с точностью выходного напряжения ±.015%, этот чип может выдерживать максимальный выходной ток 5 А при типичном падении напряжения 1,35 В.
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Приложениявключают пост-регулятор для переключения преобразователя постоянного тока в постоянный, источник питания микропроцессора, зарядное устройство, настольные ПК, блоки питания RISC и встроенных процессоров и многое другое. Этот чип стоит 0,50 доллара за единицу и падает до 0,167 доллара за всю катушку из 3000.
Я упомянул эту деталь, потому что она не производится ни компанией Biggy, как Texas Instruments, ни китайской компанией, которая предоставляет свои технические данные только на мандарине.Diodes Incorporated — известная компания, продукту которой мы можем доверять с закрытыми глазами, и в качестве бонуса он действительно дешев.
Название детали: AZ1084C
Лист данных: AZ1084C Лист данных
LT1085 от Linear Technologies
LT1085 также является отраслевым стандартом, очень дешевый, сильноточный LDO (Low Dropout Regulator), который имеет входное напряжение не более 30 В и доступен в версиях с регулируемым и фиксированным выходным напряжением с точностью выходного напряжения. из ±.015% этот чип может выдерживать максимальный выходной ток 7,5 А при типичном падении напряжения 1 В.
Он имеет ток покоя 10 мкА с диапазоном рабочих температур от -40 ° C до + 150 ° C в зависимости от размера корпуса. Функции защиты включают перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков переходного напряжения. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений.Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Применения включают пострегулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство для аккумуляторов, регуляторы постоянного тока и многое другое. Этот чип стоит 0,50 доллара за единицу и падает до 0,167 доллара за всю катушку из 3000.
Название детали: LT1085
Лист данных: LT1085 Лист данных
BA3258HFP от Rohom Semiconductors
BA3258HFP также является промышленным стандартом, недорогим, однокристальным, двойным выходом, сильноточным LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение макс. 14 В, эта ИС имеет двойной выходной каскад в показанной версии.Он может производить две шины питания с регулируемым выходом: одну 3,3 В и одну шину питания 1,5 В из одного входа. Это очень компактный LDO, который поставляется в корпусе HRP5.
Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают FPD, телевизоры, DSP и многое другое. Эта микросхема стоит 0,57 доллара за единицу и падает до 0 долларов.38 для всего барабана 3000.
Название детали: BA3258HFP
Лист данных: BA3258HFP Лист данных
HMC1060LP3E от Analog Devices
HMC1060LP3E также является отраслевым стандартом, однокристальным, многовыводным, сильноточным LDO (стабилизатором с малым падением напряжения), который имеет входное напряжение 5,6 В и предлагает четыре выходных канала. Четыре канала выходного напряжения программируются и называются VR1 — VR4.VR1 можно запрограммировать на 1,8–5,2 В при 100 мА, VR2 и VR3 можно запрограммировать на 1,8–5,2 В при 50 мА, а VR4 можно запрограммировать на 1,8–5,2 В при 300 мА
Это, безусловно, самый дорогой чип во всем этом списке, он обладает удивительными функциями , такими как выходное напряжение, пропорциональное температуре (PTAT), и сверхнизкими шумовыми характеристиками. В таблице данных указано, что масштабирует напряжение питания в зависимости от температуры, чтобы максимизировать фазовый шум и характеристики выходной мощности .
Он имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания и работает при температуре от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают подачу ВЧ и смешанных сигналов, генерацию сверхмалых шумов (ФАПЧ, ГУН, ФАПЧ со встроенными ГУН) и многое другое. Этот чип стоит $ 9.435682 за единицу и упадёт до $ 7.388182 на всю катушку 3000.
Название детали: HMC1060LP3E
Лист данных: HMC1060LP3E Лист данных
Примечание: Обратите внимание на производителя, некоторые параметры устройства могут сильно отличаться в зависимости от производителя.
Надеюсь, вам понравилась эта статья и вы узнали из нее что-то новое. Если у вас есть сомнения, вы можете задать вопрос в комментариях ниже.
Типы регуляторов напряжения: работа и их ограничения
В электроснабжении регуляторы напряжения играют ключевую роль. Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы? Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является важной частью для работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы.В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей. Источники питания бывают двух типов, например, источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей. Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.
Что такое регулятор напряжения?
Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения.Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.
Регулятор напряжения
Существует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения — самый простой тип регулятора напряжения.Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.
Основными компонентами , используемыми в регуляторе напряжения , являются
- Цепь обратной связи
- Стабильное опорное напряжение
- Цепь управления проходным элементом
Процесс регулирования напряжения очень прост благодаря использованию трех вышеуказанных компонентов. Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока.На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.
Здесь проходной элемент — это один из видов твердотельного полупроводникового устройства, похожий на BJT-транзистор, PN-Junction Diode в противном случае MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.
Работа регулятора напряжения
Схема регулятора напряжения используется для создания и поддержания постоянного выходного напряжения, даже когда входное напряжение в противном случае изменяется.Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов. Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.
Типы регуляторов напряжения и их работа
Эти регуляторы могут быть реализованы посредством интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения.Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.
Типы регуляторов напряженияВ основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.
- Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
- Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
Линейные регуляторы напряжения
Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения — это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.
Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе по всему транзистору, чтобы поддерживать постоянный выход. Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.
Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.
- Положительный Регулируемый
- Отрицательный Регулируемый
- Фиксированный выход
- Отслеживание
- Плавающий
Преимущества
К преимуществам линейного регулятора напряжения относятся следующие.
- Обеспечивает низкую пульсацию выходного напряжения
- Быстрое время отклика на нагрузку или изменение линии
- Низкие электромагнитные помехи и меньший шум
Недостатки
К недостаткам линейного регулятора напряжения относятся следующие.
- КПД очень низкий
- Требуется большое пространство — необходим радиатор
- Напряжение выше входа не может быть увеличено
Регуляторы напряжения серии
В последовательном регуляторе напряжения используется регулируемый элемент, подключенный последовательно с нагрузкой. Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.
Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения.Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.
Шунтирующие регуляторы напряжения
Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор.Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.
Применение шунтирующих регуляторов
Шунтирующие регуляторы используются в:
- Импульсные источники питания с низким выходным напряжением
- Цепи источника и приемника тока
- Усилители ошибок
- Регулируемые линейные и импульсные источники питания напряжения или тока
- Напряжение Мониторинг
- Аналоговые и цифровые схемы, требующие точных эталонов
- Прецизионные ограничители тока
Импульсные регуляторы напряжения
Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.
Импульсный регулятор напряжения быстро включается и выключается для изменения выхода.Он требует управляющего генератора, а также заряжает компоненты накопителя.
В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся частотой, постоянным рабочим циклом и спектром шума, налагаемым PRM, изменяются; отфильтровать этот шум труднее.
Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном регуляторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.
В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.
Топологии коммутации
Имеет два типа топологий: диэлектрическая изоляция и неизолированная.
Изолированный
Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи подразделяются на два типа, в том числе следующие.
- Обратные преобразователи
- Прямые преобразователи
В перечисленных выше изолированных преобразователях рассматривается тема импульсных источников питания.
Без изоляции
Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — увеличивает входное напряжение; Step Down (Бак) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.
Опять же, неизолированные преобразователи подразделяются на разные типы, однако наиболее важными из них являются
- Понижающий преобразователь или понижающий регулятор напряжения
- Повышающий преобразователь или повышающий регулятор напряжения
- Понижающий или повышающий преобразователь
Преимущества топологий коммутации
Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.
Недостатки топологий коммутации
- Более высокое пульсирующее напряжение на выходе
- Более медленное время восстановления переходного процесса
- EMI производит очень шумный выходной сигнал
- Очень дорогие
Повышающие импульсные преобразователи, также называемые повышающими импульсными регуляторами, обеспечивают более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления цепочками светодиодов используется повышающий импульсный регулятор напряжения.
Повышающие регуляторы напряженияПредположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)
Тогда V на входе I на = V на выходе I на выходе ,
I на выходе / I in = (1-D)
Из этого следует, что в этой цепи
- мощности остаются прежними
- Напряжение увеличивается
- Ток уменьшается
- Эквивалентно трансформатору постоянного тока
Понижающее (понижающее) напряжение Регулятор
Понижает входное напряжение.
Понижающие регуляторы напряженияЕсли входная мощность равна выходной мощности, то
P вход = P выход ; V вход I вход = V выход I выход ,
I выход / I вход = V вход / V выход = 1 / D
Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент трансформации находится в диапазоне 0-1.
Повышение / Понижение (повышение / понижение)
Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.
- Выходное напряжение имеет полярность, противоположную входной.
- Это достигается за счет прямого смещения диода с обратным смещением VL во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
- Используя этот тип импульсного регулятора, можно достичь эффективности 90%.
Регуляторы напряжения генератора
Генераторы вырабатывают ток, необходимый для удовлетворения требований к электричеству автомобиля при работе двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор имеет способность производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.
Регулятор напряжения генератора Статор — это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.
Электронный регулятор напряжения
Простой регулятор напряжения можно сделать из резистора, соединенного последовательно с диодом (или серией диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.
Электронный регулятор напряженияТранзисторный регулятор напряжения
Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного напряжения пробоя.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.
Основные параметры регуляторов напряжения
- Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают в себя напряжение i / p, напряжение o / p, а также ток включения / выключения. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
- Остальные параметры этого регулятора: частота коммутации, ток покоя; напряжение обратной связи тепловое сопротивление может применяться на основе требования
- Ток покоя является значительным, если эффективность во всех режимах ожидания или небольшая нагрузка является основной проблемой.
- Если рассматривать частоту коммутации как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, тепловое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
- Если контроллер имеет полевой МОП-транзистор, после этого все кондуктивные, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
- Наиболее важным параметром является напряжение обратной связи, поскольку оно определяет меньшее напряжение включения / выключения, которое может выдержать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.
Как правильно выбрать регулятор напряжения?
- Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
- Когда разработчик описал эти потребности, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее предпочтительным потребностям.
- Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
- Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
- Это техническое описание в основном помогает в измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выхода и т. Д.
- Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, разнообразными эффективными и переключаемыми типами, такими как семейство MP171x, семейство HF500-x, MPQ4572-AEC1, MP28310, MP20056 и MPQ2013-AEC1.
Ограничения / недостатки
Ограничения регуляторов напряжения включают следующее.
- Одним из основных ограничений регуляторов напряжения является их неэффективность из-за рассеивания большого тока в некоторых приложениях.
- Падение напряжения на этой ИС похоже на падение напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
- Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
- В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоких входных напряжениях рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
- Еще одним ограничением является то, что они просто способны к понижающему преобразованию по сравнению с переключательными типами, поскольку эти регуляторы обеспечивают понижающее преобразование и преобразование.
- Регуляторы, подобные импульсным, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут генерировать больше шума, если их внешние компоненты не выбраны осторожно.
Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам относительно этой статьи или любой помощи в реализации проектов в области электротехники и электроники вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?
Понимание того, как работает регулятор напряжения
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.
В линейном стабилизаторе используется активное (BJT или MOSFET) устройство прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.
Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая контролирует время включения и выключения питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.
Каковы некоторые топологии импульсных регуляторов?
Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.
Каким образом регулятор частоты коммутации влияет на конструкцию регулятора?
Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.
Какие потери происходят с импульсным регулятором?
Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.
Каковы обычные применения линейных и импульсных регуляторов?
Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.
Как импульсный регулятор управляет своим выходом?
Для импульсных регуляторовтребуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов — использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.
Какие проектные характеристики важны для ИС регулятора напряжения?
Среди основных параметров — входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.
Рекомендации
Загрузить средства проектирования управления питанием
Инструмент для проектирования регуляторов напряжения ADIsimPower ™
Типы регуляторов напряженияи принцип работы | Статья
.СТАТЬЯ
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.
Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.
Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсаторы для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторымогут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторыочень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторовобычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применение линейного регулятора и импульсного регулятора
Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать подходящий регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронной инженерии
_________________________Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!
Получить техническую поддержку
Основы электроники: регулятор напряжения
Создание регулятора напряжения
Справочная теория: как работает регулятор напряжения?
Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора переменного тока, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, им всем требуется определенное напряжение, чтобы функция. Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.
Регулятор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.
Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.
В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы регулятора напряжения, с которой вы работаете, в разделе «Примечания по применению».
Указания по применению для регулятора 7805T
Afrotechmods также имеет информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.
Проект
Комплект регулятора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.В комплект входит:
(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) 0.Монолитный конденсатор 1 мкФ
(1) Резистор 1 кОм
(1) Красный светодиодный индикатор питания
(1) Разъемы контактов
(1) Руководство пользователя
Вам понадобятся:
• Паяльник
• Припой
• Резаки
• Блок питания от сетевого адаптера 6-18 В (Mean Well GS06U-3PIJ)
Комплект регулятора напряжения макетной платы Solarbotics 34020
Направление:
1. Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1.Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены — они не поляризованы .
2. Регулятор напряжения и цилиндрический домкрат:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе — обратное направление не работает! Затем обрежьте лишние провода. Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, убедившись, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку. Вы можете подтвердить, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).
4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее — они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все выровненные.
5.Настройка Power Rails:
ЭТО ВАЖНО. Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.
Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. Не помещайте капли на подушечки, если вы это сделаете. Обратите внимание, что это не рекомендуемая модификация.
Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В — не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.
Шаг 5
SWT7 Навесной
Вопросы для обсуждения
1.Какое влияние на выход цепи окажут тепло и шум?
2. Как конденсаторы помогают отфильтровывать помехи?
3. Каковы преимущества и недостатки линейных и импульсных регуляторов? Коммутация
или линейный стабилизатор напряжения: что лучше? | Блог
Altium Designer| & nbsp Создано: 22 июля 2017 г. & nbsp | & nbsp Обновлено: 18 января 2021 г.
У вас когда-нибудь взрывался конденсатор перед вами? Так я начал свою карьеру в дизайне электроники.Я также испортил расчет бюджета мощности для того, что изначально было представлено как «простой» проект. Конечным результатом стал прототип печатной платы с раскаленным докрасна стабилизатором напряжения, способным поджарить яйцо … или того хуже.
С тех пор я пришел к выводу, что элегантность и изысканность дизайна мало что значат. Если вы сделаете ошибку при настройке схем управления питанием, ваша конструкция окажется практически бесполезной. Расчет бюджета мощности, температура окружающей среды и, в моем случае, выбор основного компонента управления питанием, такого как регулятор напряжения, могут сделать или сломать ваш проект печатной платы.
Функция цепи управления источником питания во встроенной системе
За более чем десять лет разработки встраиваемых систем я видел, как микроконтроллеры развиваются семимильными шагами. Они перешли от исторического Zilog к современному процессору Cortex M4. Такие технологии, как Bluetooth LE и ZigBee, совершили дальнейшую революцию в индустрии встроенных систем. Однако вам всегда понадобится хорошо спроектированная силовая схема. Без него эти крутые технологии просто ждут, чтобы растаять.
Конденсаторы в стороне, у вас есть регулятор напряжения, который лежит в основе всех хорошо продуманных силовых схем. Как следует из названия, он обеспечивает стабильный источник напряжения, который позволяет встроенной системе стабильно работать. Стабилизаторы напряжения работают, получая входное высокое напряжение перед понижением и стабилизацией напряжения до уровня, необходимого для работы электронного устройства.
До того, как компоненты 3,3 В стали популярными, мы ограничивались микроконтроллерами (MCU) и интегральными схемами (IC) с питанием 5 В.LM7805 был популярным в то время артикулом, так как это был простой линейный стабилизатор напряжения 5 В. На самом деле, его простота довольно элегантна, что делает его популярным и сегодня. Когда 3,3 В стало основным рабочим напряжением, LM1117-33 стал довольно эффективным линейным стабилизатором напряжения.
Ограничения линейных регуляторов напряжения
Был период, когда интегральные схемы перешли на работу с напряжением 3,3 В, и за это время микроконтроллеры пережили этап быстрой эволюции.Раньше дизайнеры ориентировались на количество входов / выходов микроконтроллера. Затем они стали больше интересоваться количеством интегрированных функций, таких как UARTS, Ethernet, USB, и быстро растущей вычислительной мощностью. В конце концов, линейный регулятор напряжения был доведен до предела.
Эти удобные радиаторы для охлаждения линейных регуляторов.
Многие люди совершили ошибку новичков, имея дело с линейным регулятором напряжения, и приняли номинальный ток как абсолютный.Это было серьезной проблемой, потому что стабилизатор напряжения LM7805 рассчитан на 5 В, 1,5 А. Но это не означает, что линейный регулятор может справиться с этим напряжением, в лучшем случае не изнашиваясь или не сгорая при этом. Перед выбором линейного регулятора напряжения необходимо учесть еще как минимум три параметра.
Уровень рассеиваемой мощности рассчитывается с учетом разницы между входным и выходным напряжением; затем вы умножаете это число на ток нагрузки. Если вы регулируете напряжение с 12 В до 5 В, а ваша встроенная система потребляет 100 мА, то рассеиваемая мощность будет равна 0.7Вт. Имея это в виду, отметим, что линейный регулятор LM7805 может работать при температурах до 125 ° C. После этого вы начнете замечать нежелательные явления, такие как таяние и горение.
Но типичный LM7805 в корпусе TO-220 имеет термостойкость 65 ° C / Вт. Это означает, что на каждые 1 Вт вы увидите увеличение на 65 ° C сверх температуры окружающей среды. В некоторых регионах средняя температура составляет около 35 ° C, поэтому LM7805 будет работать при 100 ° C, что немного ниже допустимой максимальной температуры, но у вас меньше 10% номинального максимального тока, равного 1.5А.
Почему переключение регулятора напряжения — лучший выбор, буквально
Характеристики линейного регулятора напряжения сделали его далеко не идеальным кандидатом в систему питания с высокими требованиями к мощности, поскольку выделяемое тепло может повредить регулятор или снизить срок службы соседних компонентов. Это повысило интерес к импульсному регулятору. Как следует из названия, импульсный стабилизатор очень быстро включает и выключает источник питания для изменения выходного напряжения, обеспечивая стабильный и эффективный источник питания.Импульсный регулятор может довольно эффективно рассеивать тепло, снижая температуру и сводя к минимуму риск буквально расплавления.
Импульсные регуляторы — это эффективность.
Я использовал LM2576, популярный импульсный стабилизатор, который работает с КПД 75% при регулировании при напряжении 3,3 В. Это выделяет часть тепла, которое вы можете увидеть от сопоставимого линейного регулятора, что делает его идеальным для приложений, в которых требуется регулирование от высокого напряжения к низкому.Он также подходит для встроенных систем, в которых вы обычно работаете с высокой производительностью.
Коммутация и линейные регуляторы напряжения
При всей эффективности, которую обеспечивает импульсный стабилизатор напряжения, два критерия по-прежнему не позволяют использовать его по умолчанию. Стоимость импульсного регулятора и обязательных пассивных компонентов. Они могут быть значительными и в 30 раз выше, чем затраты на линейный стабилизатор напряжения и пару конденсаторов.
Кроме того, для импульсного регулятора требуется больше пассивных компонентов. Когда у вас больше пассивных компонентов, обслуживание становится намного сложнее. Вы должны убедиться, что вы тщательно выбираете номиналы катушек индуктивности и конденсаторов, и это также автоматически приводит к потребности в большем пространстве на печатной плате.
Короче говоря, если вы работаете над простым приложением, которое не потребляет много энергии, линейный стабилизатор напряжения будет логичным выбором. Но если вы работаете над мощным проектом или пытаетесь перейти с промышленного напряжения 24 В постоянного тока на 3.3 В, тогда вы можете рассмотреть возможность использования импульсного регулятора напряжения для вашего источника питания и выходного напряжения.
Есть вопросы по схемам управления питанием? Вам нужны советы и рекомендации по проектированию импульсных регуляторов напряжения? Свяжитесь с опытным дизайнером печатных плат в Altium Designer прямо сейчас.