Радиаторы отопления устройство и принцип работы: Принцип работы радиатора/батареи отопления
Принцип работы радиатора/батареи отопления
Как работает радиатор отопления?
Отопительный радиатор стоит в каждом доме, однако далеко не все пользователи знают, как работают такие системы. Между тем знать об этом важно, чтобы выбрать оптимальную для своей квартиры батарею.
Общие принципы работы отопительных радиаторов
Подходы к отоплению в системах отличаются, но есть общие принципы, по которым работают все радиаторы:
- В систему подается теплоноситель, чаще всего им служит горячая вода.
- Теплоноситель нагревает поверхность радиатора.
- Нагретая батарея передает тепло в пространство помещения.
- Постепенно теплоноситель остывает, после чего перетекает в общую систему, где проходит повторный нагрев.
Это упрощенный принцип работы, схема распределения тепла в различных радиаторах будет отличаться.
Как работают батареи из чугуна
При подключении радиаторов, изготовленных из чугуна, наиболее часто используется односторонняя схема.
- Нагретая вода подается в радиатор.
- Вода остывает, благодаря физическим процессам перетекая по конструкции батареи.
- Теплоноситель вытекает в другую трубу, попадает обратно в общую систему.
Это наиболее простая схема. Для существенного нагрева и поддержания оптимальной температуры требуется значительный объем теплоносителя. Однако такие радиаторы медленнее остывают, способны долго сохранять тепло даже при экстренном отключении отопления. Также чугун нетребователен к качеству теплоносителя, однако не способен выдерживать сильные гидроудары, которые нередко случаются в центральных системах отопления.
Как работают батареи из стали, алюминия и биметаллические модели
Данные радиаторы могут подключаться по различным схемам, а работа их также основана на передаче тепла в окружающее пространство. В отличие от чугунных, такие типы батарей требуют минимум теплоносителя (примерно 350 г), что не только упрощает монтаж и демонтаж, но и делает их экономичными.
Экономия теплоносителя происходит за счет тонкой трубки, по которой течет вода. При этом площадь соприкосновения с воздухом остается значительной, потому радиаторы из стали, алюминия или совокупности этих металлов отличаются лучшей теплоотдачей.
Примечательно, что биметаллические радиаторы характеризуются более высоким коэффициентом теплоотдачи. Высокие показатели достигаются благодаря их устройству: теплоноситель перетекает по стальному сердечнику, который передает тепло алюминиевой оболочке (оболочка не контактирует с водой, потому защищена от коррозии).
Как работают вакуумные радиаторы
Нагрев при помощи вакуумной батареи отличается от всех озвученных выше типов, поскольку здесь используется принцип двойной теплопередачи.
Используемая в роли теплоносителя вода проходит наиболее короткий путь (по запаянной прямой трубе), что обеспечивает быстрый нагрев. С трубой контактирует жидкость внутри, которая и проводит тепло.
Непосредственно батарея – это герметичные секции, в которых нет воздуха, что не позволяет жидкости внутри системы быстро остывать. Из-за отсутствия воздуха жидкость закипает при более низкой температуре. Работает радиатор по принципу:
- Теплоноситель нагревает жидкость внутри батареи вплоть до кипения.
- Пар заполняет собой внутреннюю конструкцию, оседает в виде конденсата на её стенках, после чего перетекает вниз.
- Цикл нагрева повторяется.
Поскольку батарея нагревается равномерно, теплоотдача вакуумных систем крайне велика, а используемый объем теплоносителя мал.
Читайте так же:
Отзывы — биметаллические радиаторы
Отзывы — алюминиевые радиаторы
Отзывы — радиаторы отопления
Биметаллические радиаторы: устройство, назначение, преимущества (+видео)
Заметил, что при монтаже систем отопления все чаще используют биметаллические радиаторы. Хотелось бы узнать, почему они получили такое распространение, ну и до кучи их сильные и слабые стороны? Заранее благодарен за ответ.
От выбора приборов (радиаторов, конвекторов и пр. ) зависит правильность устройства и надежность эксплуатации системы обогрева жилья или административных и офисных помещений.
Выбор радиаторов представлен многочисленными видами, марками и производителями, но сегодня мы поговорим только о наиболее популярных радиаторах – биметаллических. При их производстве были учтены все положительные качества и устранены недостатки других типов отопительных устройств.
Биметаллический радиатор в разрезе
Говоря простым языком, биметаллический радиатор – это теплопередающий элемент отопительной системы, который состоит из стальной внутренней части (по которой движется теплоноситель), и алюминиевого каркаса (оребрения), который не контактирует с водой, и служит только для улучшенной отдачи тепла.
Реже вместо алюминиевого верхнего слоя могут использоваться ребра из других металлов. Основная идея применения разных металлов в одном устройстве – это различные физические и структурные свойства этих материалов.
Устройство и принцип работы биметаллического радиатора
Перед прочтением, рекомендуем вам посмотреть видео о том, какой радиатор выбрать:
youtube.com/v/Ur_SpsKOPso?fs=1&hl=ru_RU»>
В биметаллическом радиаторе теплоноситель пускается по более прочной конструкции – стальному внутреннему трубопроводу, и тому есть несколько причин:
- Стали не страшны перепады давления в отопительной системе;
- Стыковые соединения “сталь-сталь” гораздо лучше переносят повышение давления, чем алюминиевые соединения.
Актуальность последнего постулата можно увидеть в домах с централизованным отоплением, когда в ремонтный период проводится испытание плотности и герметичности всех частей системы (гидравлические испытания) Делается это путем повышения давления в отопительной системе на отметку в 1,25 от рабочих параметров. Это дает достаточно серьезную нагрузку на стыки трубопроводов, в результате чего алюминиевый радиатор и его сочленения могут дать течь.
Кроме этого, сталь лучше переносит электрохимические воздействия, из-за которых внутренняя поверхность приборов, выполненных из алюминия, быстро коррозирует, и они выходят из строя.
Разрушение металла вследствие электрохимических факторов еще более заметно при использовании в системе медных элементов (например, теплообменное устройство котельного агрегата). Благодаря этому, установка биметаллических приборов будет целесообразна и при любой комплектации системы теплоснабжения.
Биметаллические радиаторы имеют разные размеры, благодаря чему могут быть установлены в любом помещении
Что касается алюминиевой оснастки таких радиаторов, то этот материал более теплоинертен. Это его и положительная черта и, в некотором роде, недостаток.
Алюминиевые поверхности очень быстро реагируют на изменение температуры. Плюс здесь в том, что такая инертность дает возможность оперативной регулировки температурных параметров в помещении. Это удобно при значительной автоматизации системы отопления (установка температурного регулирования по параметрам внешней среды и пр.
).Алюминий – один из самых эффективных металлов для передачи тепла, поэтому его применение для оребрения наиболее оправдано.
Высокая теплоотдача удобна еще и тем, что требует меньшее количество теплоносителя при эквивалентном тепловом потоке чем от чугунных радиаторов, к примеру. Это позволяет выполнить размеры и конфигурацию прибора с алюминиевым корпусом изящно и не громоздко. Такие радиаторы аккуратно встраиваются в ниши и удобны при обогреве небольших помещений. Объем воды в одном отсеке (секции) биметаллического радиатора обычно составляет до 150 мл.
Главным минусом при быстром прогреве и остывании выполненных из алюминия ребер является нагрузка на автоматику (пускового механизма котла, автоматических устройств и механизмов системы теплоснабжения и пр.). При повышенной частоте включений-выключений возрастает износ деталей автоматики (реле, механизмы розжига газа и т. д.)
Оребрение радиатора
Большое значение для эффективной передачи тепла от нагревательной части радиатора помещению имеет конфигурация ребер биметаллического изделия. Теплоотдача осуществляется с помощью более охлажденных воздушных масс помещения, проходящих через ребра.
Ребра радиатора специальной конфигурации лучше отдают тепло
Опытным путем и расчетами производители смогли достичь наиболее удобного конструктива для оптимального пути прохождения воздуха. Здесь важную роль играет захват холодного (снизу) и распределение горячего воздуха после обтекания нагретых поверхностей. При наиболее длинном его пути следования через радиатор (а это и является основной трудностью при расчетах и подборе конфигурации ребра радиатора) в разы растет эффективность раздачи тепла по помещению.
Преимущества биметаллических радиаторов
При промывании системы перед осенне-зимней эксплуатацией, биметаллические радиаторы говорят о себе, как более удобные, чем однокомпонентные. Стальные внутренние элементы прибора гораздо надежнее реагируют на промывку перед сезоном обогрева.
Низкая шероховатость стальной поверхности препятствует образованию налета на ней и лучше очищается. Это в разы продлевает службу радиаторов, учитывая ненадлежащую чистоту, химсостав и качество теплоносителя централизованной системы отопления.
Широкое применение нашли радиаторы производства Grandini, Rifar, Global, Sira и некоторые другие. Интересную динамику демонстрирует торговая марка Kraft. Ее радиаторы все чаще используют при новом монтаже и замене старых систем отопления. Конкурентная борьба обусловила относительно ровный уровень цен у разных компаний при достаточно высоком уровне качества продуктовой линии.
Один из лидеров на рынке – радиатор Rifar
При формировании сметы на устройство системы отопления может показаться, что с установкой биметаллических радиаторов существенно завышена среднестатистическая стоимость системы (особенно, если это большие объекты), но такая калькуляция не учитывает долговечность и безремонтный период эксплуатации. Биметаллические элементы служат гораздо дольше своих собратьев. Выгода такого применения чувствуется с годами.
Превосходства биметаллических радиаторов перед алюминиевыми, чугунными и другими “коллегами” не сказываются на их доступности и адекватной стоимости. Когда стоит выбор, какие радиаторы применить соотнеся качество и цену, биметаллические с большим отрывом опережают остальные варианты.
Применение высокопрочного покрытия позволяет радиаторам не терять свой внешний вид. Заводская обработка радиаторов делает ненужными покрасочные работы в дальнейшей эксплуатации.
Также компании не перестают радовать и удивлять потребителей новыми дизайнами биметаллических приборов, которые обязательно впишутся в оформление самого изысканного интерьера.
Не прихотливы биметаллические радиаторы и в монтаже. Типоразмеры радиаторных соединений подходят под любую арматуру и серийные фитиги. В конструкции приборов на стадии производства предусмотрена возможность разностороннего подключения к системе.
Возможные схемы подключения биметаллических радиаторов к системе отопления
Широкий ряд радиаторов биметаллической серии позволяют производить замену существующих приборов других типов при реконструкции или ремонте без нарушения проектной и гидравлической схемы. По схожему температурному потоку (в производственном ряде одной модели обычно представлено большое количество разносекционных приборов) гидравлическому сопротивлению можно подобрать необходимый биметаллический радиатор без дальнейших негативных изменений в работе системы в целом.
В споре о приобретении обычного радиатора или биметаллического – выбор очевиден и прост. До приобретения подумайте, что для вас важнее – начальная незначительная экономия или дальнейший многолетний комфорт и тепло без проведения утомляющих и затратных ремонтных работ.
Принцип работы вакуумных радиаторов отопления и их истинные преимущества
Сейчас на рынке появились радиаторы совершенного нового типа. Производители и продавцы уверяют, что они способны творить просто чудеса. Это вакуумные радиаторы отопления, принцип работы которых мы подробно и разберем в данном материале, а также рассмотрим действительно ли они такие эффективные как заверяют производители.
Cодержание статьи
Устройство вакуумного радиатора отопления
В общем-то, ничего сложного в его конструкции нет. Радиатор состоит из металлических секций. Вместо воды в секциях находится литиево-бромидный раствор, закипающий уже при плюс 35 градусах по Цельсию. Воздух из секций полностью откачан с целью снижения внутреннего давления. По нижнему коллектору радиатора протекает горячая вода, поступающая из системы отопления. Она не должна соприкасаться с теплоносителем, и контакт происходит только через металлическую поверхность трубы. Изготовлена эта труба (как и весь радиатор) из полутора миллиметровой углеродистой стали.
Принцип действия вакуумного отопительного прибора
Горячая вода, поступающая из отопительной системы в нижнюю часть радиатора (подключенного к системе отопления с помощью стандартных муфт), передает тепло литиево-бромидной жидкости. Она быстро начинает испаряться, нагревая все секции радиатора. Конденсат стекает вниз, затем вновь переходя в пар поднимается вверх. Таким образом, наружная стенка трубы, граничащая с теплоносителем, постоянно охлаждается. И разность температур между ее внутренней и наружной поверхностью способствует увеличению теплового потока.
Секции радиатора, за пару минут прогреваемые горячим паром, отдают тепло окружающему воздуху. Причем, как утверждают производители, это происходит моментально. Заявленная ими теплоотдача одной секции данного прибора – 300 ватт и при этом используется совсем небольшое количество воды. Это серьезные цифры – далее попробуем выяснить, так ли это. И заодно проверим, насколько прекрасны новые отопительные приборы.
Видео: Принцип работы вакуумных радиаторов
Верить ли рекламе, расхваливающей вакуумные радиаторы отопления
Постараемся подойти к этому вопросу максимально скрупулезно и объективно, беря за основу только доказанные факты. При этом рассмотрим каждое из указанных производителем достоинств данных радиаторов. Итак, начали.
- Постоянно рекламируется характерное для вакуумных радиаторов молниеносное время прогревания. Хорошо, допустим. Однако вовсе не так быстро прогреется весь дом. Ведь в нем находится не один лишь воздух, но и стены, внутренние перегородки с мебелью, потолок с полом. На их нагрев нужно определенное время. И поэтому совсем не так важно, минуту или пять будет греться сам радиатор.
- Теперь о малом количестве теплоносителя, что якобы весьма экономично. Вот только вопрос – где именно проявляется эта экономия. Если в центральной системе отопления, то это сущий блеф – здесь не так важно, больше горячей воды протечет по трубам или меньше. Если же взять загородный дачный домик, то и в нем экономия под вопросом, учитывая то, что те же современные панельные радиаторы тоже требуют не столь много теплоносителя.
- В радиаторах вакуумного типа не может появиться воздушных пробок. Об этом с восторгом вещает реклама. Но ведь радиаторы – это не вся система отопления, а лишь ее часть. Между прочим, пробки появляются лишь тогда, когда эта система собрана неграмотно. В противном случае их не будет с любыми радиаторами.
- Еще два жирных плюса, которыми козыряют изготовители. Это невозможность засорения радиаторов и отсутствие коррозии. Пожалуй, для автономных систем отопления эти плюсы вряд ли окажутся такими уж жирными. Если горячая вода в отоплении чистая, ее уровень кислотности соответствует нормам, а из системы она не сливается, то никакой коррозии и не будет. И засорам взяться неоткуда.
- Насчет низкого гидравлического сопротивления, якобы резко уменьшающего статью расходов на отопление, скажем так. Для централизованного отопления непонятно вообще, чьи расходы имеются в виду. Разве что хозяев котельных, сотнями километров перегоняющих тонны горячей воды. Получается выгода может быть только при использовании в автономной системе отопления и это еще вопрос может ли она быть. А для автономной системы в своем доме многие используют естественную циркуляцию теплоносителя, так что вопрос этот неактуален.
- Следующим пунктом будет экономия энергии вдвое, а то и вчетверо. С этим ошибочка вышла, так как закон сохранения энергии по-прежнему действует. Радиаторы, даже самые инновационные, не могут вырабатывать энергию. Они только передают ее, и об экономии говорить не приходится. Сколько тепла затрачено, столько должно быть и восполнено – только так.
- Теперь коснемся теплоотдачи вакуумных трубок, которая, как показывают сертификаты изготовителей, не является стабильной. Этот показатель может иметь отклонения до 5 процентов в большую и меньшую сторону. Оказывается, это и от скорости воды в системе отопления зависит, и от ее температуры. Так что вряд ли можно автоматику к такому радиатору приспособить. А два радиатора с равным количеством секций могут иметь разные параметры.
- Отдельно скажем о системах отопления в частных домах, где вода циркулирует естественным образом. Тут важен гидравлический напор, создающийся за счет разницы высоты горячей воды в котле и радиаторе. Так вот, у приборов вакуумного типа эта высота значительно меньше, поэтому в такой системе они работают с проблемами.
- Теперь представим, что в корпусе радиатора появилась трещина. Даже если она крохотная, о вакууме можно забыть. Уйдет он безвозвратно, и восстановится нормальное атмосферное давление. А оно, в свою очередь, приведет к повышению точки кипения теплоносителя. Результат окажется плачевным – либо жидкость почти не будет испаряться, либо пар вовсе не появится. Короче, радиатор греть перестанет.
- Кстати, эта чудесная (по заверению продавцов и рекламщиков) литиево-бромидная жидкость к тому же еще и ядовита, оказывается. Поэтому то, что радиаторы при утечке теплоносителя станут холодными, только полбеды. Хуже, если батарея прохудиться, например, ночью, отравив спящих жителей квартиры.
Так что, пожалуй, не всегда стоит верить рекламе, такой убедительной на первый взгляд.
конструкция, настройка и проверка устройства
Приборы, позволяющие регулировать температуру в помещении, впервые были разработаны и выпущены в 1943 году в Дании, и в скором времени вся Европа стала использовать их для снижения затрат на отопление. Сегодня вопрос экономии как нельзя актуален, а принцип работы терморегулятора нового поколения такой, что позволяет не только следить за поддержанием заданной температуры, но и экономить до 25% затрат на обогреве жилья.
Регулирующие устройства нового поколения
Если первые регулирующие устройства для батарей отопления требовали обязательного контроля человека, то у моделей последних лет появился ряд существенных преимуществ перед «старичками».
- Дизайн современных термостатов таков, что они практически не заметны и выглядят, как естественное продолжение радиатора. Их легко настраивать и регулировать.
- Термостаты нового поколения просто монтировать, как в старую централизованную отопительную систему, так и в автономную.
- Длительный срок эксплуатации и отсутствие потребности в профилактическом и техническом обслуживании делают их желательными элементом отопительных систем.
- Принцип работы регулятора температуры позволяет выставить нужные параметры, которых он будет придерживаться весь отопительный сезон, с учетом изменений температуры воздуха за окном. Это позволит избежать таких неприятных моментов, когда на улице стало тепло, а батареи еще настолько горячие, что приходится открывать балкон или окна для проветривания.
- Терморегулятор позволяет калибрировать температурные параметры от +5°C, если требуется создать условия, чтобы система не замерзла, но при этом не «съедала» бюджет, до +27°C для любителей жары. Прибор будет придерживаться заданных параметров с точностью до 1 градуса.
- Принцип действия терморегулятора таков, что теплоноситель в отопительном контуре начинает распределяться равномерно, доходя горячим даже до последних в цепи радиаторов отопления.
- Если прибор установить в автономной системе обогрева, то владельцев ожидает экономия топлива до 25%.
Современные термостаты настолько автоматизированы, что требуют участия человека только в начале отопительного сезона, когда выставляются параметры температур в комнатах.
Как устроен термостат
Сегодня на рынке можно найти два вида регуляторов температуры: механические и электронные. Хотя у них существенные различия в способе настроек параметров, устройство терморегулятора со времен первых моделей не сильно поменялось. В настоящее время можно выбирать прибор не только по способу регулировки температуры, но и по типу отопительной системы. Есть модели, специально разработанные для однотрубных и двухтрубных отопительных контуров, но в основе и тех и других находится термическая головка (сильфон) и клапан.
Термоголовка представляет собой цилиндр с гофрированной внутренней поверхностью. Внутри сильфона располагается газообразная или жидкостная среда, очень чувствительная к любым колебаниям температур в окружающем пространстве.
В момент, когда температура в помещении достигла установленной критической нормы, средство в сильфоне расширяется, увеличивая его в размере. Следствием этого становится давление увеличенной термоголовки на клапан и его закрытие, что приводит к остановке подачи теплоносителя в батарею.
В случае понижения температуры происходит обратный процесс: внутренняя среда в сильфоне сжимается, он уменьшается в размере и перестает давить на клапан. Тот в свою очередь открывается, давая свободный проход теплоносителю.
Современная регулирующая техника настроена, как минимум, на миллион «сжатий-растяжений», чего она сможет достичь примерно за 100 лет эксплуатации.
Типы терморегуляторов
Все большее количество людей сходятся в том, что в современных условиях потребления тепла необходима жесткая экономия, чтобы снизить на него затраты. Чтобы не сидеть в холодных домах и квартирах, можно выбрать терморегулятор, подходящий под конкретную отопительную систему и создать не только оптимальные условия для проживания, но и пусть небольшую, но все-таки экономию средств.
Как показывает практика, термостаты последнего поколения могут «реанимировать» даже старые чугунные радиаторы, подключенные к центральной городской теплосети. Увеличение теплоотдачи без дополнительных денежных затрат возможно при установке термостата в отопительный контур или котел.
Большим спросом пользуются механические приборы, которые стоят дешевле электронных аналогов, но все изменения в их настройках производятся вручную. Изделия, оснащенные электронным дисплеем, полностью освобождают человека от контроля над тем, как работает терморегулятор на протяжении всего отопительного сезона.
Параметры в эти устройства вводятся один раз, а так как можно указать не только конкретную температуру, но и установить ее минимум и максимум, то это позволяет создать по-настоящему комфортный микроклимат.
Кроме того, что термостаты бывают электронные и механические, они так же отличаются по своему внутреннему содержанию. Приборы с сильфонами, наполненными жидкостью, как правило, стоят недорого, но и реакция их на температурные изменения в окружающей среде несколько замедленная.
Газонаполненные термоголовки очень чувствительны к любым колебаниям температуры. Они «заметят», если воздух в комнате потеплеет от того, что в окно светит солнце и перекроют клапан, остановив подачу носителя в батарею.
Самыми удобными в эксплуатации являются электронные терморегуляторы с программным управлением. Они позволяют устанавливать температурный режим на разный временной промежуток. Например, когда в квартире никого нет в течение рабочего дня, параметры нагрева воздуха могут быть понижены, но в определенное время суток термостат включается на повышение температуры. Это позволяет экономить на оплате отопления и энергоресурсах.
Подобные приборы стоят дорого, но купленные и установленные один раз, они на протяжении многих лет будут создавать комфорт в доме и экономию в кошельке.
Терморегулятор с выносным датчиком
Чтобы прибор работал корректно, он должен быть монтирован в горизонтальном положении, в этом случае воздух свободно циркулирует вокруг него, не влияя на заложенные в датчик параметры. Если установить его вертикально, то тепло, поднимаясь снизу, будет воздействовать на среду в сильфоне, заставляя его расширяться и закрывать клапан.
Если устройство отопительной системы таково, что установить терморегулятор горизонтально не получится, можно приобрести прибор с выносным температурным датчиком. Это так же актуально, если батареи закрыты декоративным коробом или фальш-панелью.
Выносной датчик идет в комплекте со специальной трубкой длиной 2 метра. На таком расстоянии он позволяет, как проверить терморегулятор, так и настроить его параметры. Подобной возможностью обладают и механические, и электронные устройства. Кроме того, существуют так называемые антивандальные терморегуляторы, оснащенные специальным чехлом, закрывающим его дисплей. Их устанавливают в помещениях, где живут или находятся дети.
Заключение
Принцип работы современного терморегулятора таков, что позволяет следить как за температурным режимом в доме или квартире, так и за экономией средств на отопление. Так как существуют приборы, приспособленные под конкретные отопительные системы, то стоит только определиться с его устройством, способом настройки и ценой, а установку можно произвести самостоятельно, действуя по инструкции.
Вакуумные радиаторы отопления: устройство и принцип работы
На сегодняшний день существует множество различных конструкций систем отопления. Некоторые «самоделкины» пытаются усовершенствовать старые или придумать принципиально новые способы качественно, быстро и на длительный срок отопить дом, защитив домочадцев от холода. Однако, на наш взгляд, придумывать ничего не стоит. Известную фразу из старого доброго фильма «Все уже украдено до нас» можно переделать как «Все уже придумано до нас». Речь идет о современной разработке, которая нам известна как вакуумные радиаторы отопления. Отзывы владельцев таких приборов позволяют нам шире представить возможности системы отопления вакуумного действия, понять все преимущества, увидеть недостатки.
Отопительный радиатор нового поколения
Принцип действия
Принципиальное отличие такого радиатора от традиционного заключено в том, что его корпус заполнен специальной жидкостью, которая имеет температуру закипания +350С. Образующийся при этом пар практически моментально передает тепло по всей поверхности этой конструкции. В течение буквально пары минут весь прибор приобретает температуру теплоносителя, который проходит в нижней части всей конструкции.
Внутренний объем такого теплоносителя в приборе очень небольшой и составляет всего лишь 500 мл. Для сравнения: только лишь одна секция алюминиевого радиатора имеет объем в 350 мл. Секция чугунного радиатора имеет объем 4 литра, что уже заставляет отвернуться от этого архаизма.
Принцип работы отопительного прибора
Теплоноситель в обычной в нашем представлении сети должен иметь температуру до +85-900, чтобы обогреть все помещения. Он должен проделывать иногда довольно длительный путь по каждой трубе, по каждой секции всех радиаторов отопительной системы, а это занимает достаточно долгое время и практически всегда требует огромного объема теплоносителя. Представленные вакуумные приборы отопления напрочь лишены такого недостатка, так как «закипание» газа начинает происходить уже при +350, и при этом каждая колонка является обособленной.
Величина теплоотдачи у каждой секции такого прибора отопления может достигать значения около 300 Вт.
Интересная особенность этих радиаторов: при отключении прибора замедленное движение мельчайших частиц газа в условиях вакуума не дает остывать радиатору с большой скоростью, то есть тепло остается на длительный срок.
Если вакуумные отопительные приборы работают в сочетании с жидко- и твердотопливными котлами, то расход топлива при этом уменьшается примерно в два раза. Когда же для отопления будет использован электрический котел, то тогда расход электроэнергии снизится примерно в 2,5 – 3 раза. На сегодняшний день уже существуют еще более экономичные котлы, так что снижение затрат на отопление с применением радиаторов вакуумного принципа работы может быть очень заметным.
Преимущества радиаторов
- такие радиаторы отопления вполне могут работать в сочетании с самыми различными теплоисточниками, это могут быть газовые или твердотопливные котлы, отопительные агрегаты на жидком топливе, дровяные печи или солнечные коллекторы;
- с применением подобных радиаторов достигается экономия энергоресурсов до 30%;
- экономия расхода теплоносителя составляет 80%;
- несложный монтаж;
- устойчивость к коррозии материала корпуса;
- такие агрегаты не загрязняются как чугунные или алюминиевые из-за наличия различного рода частиц загрязнений в теплоносителе;
- низкое гидравлическое сопротивление при прохождении теплоносителя;
- показатель коэффициента теплоотдачи очень высокий;
- радиаторы не требуют промывания;
- уровень безопасности эксплуатации радиаторов такого типа позволяет отнести их к разряду безопасных.
Стоимость
Внимательно изучив статьи по представленным приборам отопления и почитав отзывы в интернете, можно смело сделать выводы о том, что рассмотренные радиаторы вакуумного принципа действия стоят того, чтобы ими как минимум заинтересоваться.
Цена на такие приборы будет несколько выше, чем на традиционные радиаторы, однако экономия средств, которая произойдет в месяцы пользования этими приборами, вынудят вас считать цену обоснованной. Стоимость таких радиаторов отопления зависит от количества секций, а это напрямую влияет на объемы отапливаемых помещений. Например, 12-ти секций вакуумного радиатора будет вполне достаточно, чтобы обогреть до комфортной температуры пребывания в комнате объемом до 70м3.
Эффективность радиаторов доказана пользователями
Согласитесь, при использовании чугунных батарей или алюминиевых радиаторов такого эффекта добиться вряд ли удастся. А если и удастся, то только ценой дополнительного утепления всего дома, включая стены, крышу и пол.
Если вы еще не убедились в эффективности использования вакуумных радиаторов отопления – советуем почитать отзывы на специализированных форумах, где представлена правдивая информация. Пользователи подобных форумов оставляют свои замечания, которые вам могут помочь определиться. В любом случае, лучше для начала внимательно почитать, а лишь потом купить.
Вакуумные приборы отопления представляются прекрасной альтернативой традиционным приборам отопления, огромнейшим шагом навстречу организации теплоснабжения различного рода жилых, а также общественных зданий, такими, что позволяют существенно сэкономить используемые в ходе отопления домов энергоресурсы.
Возможно, Вас заинтересует: Керамик Групп двойной кирпич.
Термоголовки на радиаторы отопления
Современные отопительные системы не могут сегодня обойтись без дополнительных элементов терморегуляции.
Купить термоголовку для радиатора — значит существенно снизить расходы на отопление и обеспечить автоматическое поддержание комфортной температуры в помещении.
Принцип работы термоголовки
Принцип работы очень прост, но при этом различается в зависимости от конкретного типа, например: совместно с проточным клапаном она всего лишь регулирует количество теплоносителя, проходящего через радиатор, а термоголовка, используемая совместно с трех и четырех-ходовыми клапанами, еще и смешивает нагретую жидкость с охлажденной. Решение об использовании термоголовок должно приниматься, исходя из конкретной схемы отопительной системы Вашего дома, а купить термоголовки для радиаторов не составит большого труда — на рынке, да и в нашем интернет магазине, они представлены в большом количестве.
Термоголовки не могут применяться непосредственно без самого вентиля, то есть клапана, и механизма, оказывающего воздействие на шток-клапан
Делятся на устройства с ручной регулировкой требуемой температуры и программируемые, которые могут поддерживать разную температуру в различные периоды времени.
Контроль над температурой в помещении можно осуществлять двумя способами: ручным методом или, что крайне удобно — автоматическим.
Термоголовки для радиаторов работают в автоматическом режиме, т.к. оборудованы в себя специальным сильфоном, выполняющий функции определителя действующей температуры в помещении.
Сильфон — это чувствительный элемент, как правило цилиндрической формы, заполненный специальной жидкостью. Когда температура воздуха в помещении изменяется, то изменяется объем жидкости в чувствительном элементе и, соответственно, давление в нем.
Изменение давления влечет за собой изменение геометрических размеров чувствительного элемента, которое передается на затвор вентиля через соединительный шток, регулируя, таким образом, поток теплоносителя к радиатору отопления.
С какими вентилями используются термоголовки?
Радиаторные термоголовки используются с двухходовыми, трехходовыми и четырех-ходовыми вентилями. Двухходовые термостаты также называются проходными, т.к. они имеют два выхода и соединены только с одной трубой отопительной системы.
Системы отопления, укомплектованные термоголовками с трехходовыми клапанами, обладают более широкими возможностями — не просто перекрывают доступ теплоносителю, но и подмешивают в контур радиатора более холодную воду из обратки. В результате смешивания потоков снижается температура нагрева радиатора.
Существует разделение на термовентили с предварительной настройкой сопротивления и термоклапаны без данной настройки. Второй вариант позволяет добиться равных показателей уровня расхода теплоносителя для всех отопительных приборов.
Как установить термоголовку?
Установка термостатических головок позволит добиться оптимальных результатов работы радиаторов отопления, однако крайне важно соблюдать правильность их установки: нужно обеспечить свободную циркуляцию воздуха в непосредственной близости от датчика устройства, исключить возможность нагревательным элементам воздействовать на датчик, иначе реальная температура помещения не будет соответствовать установленным значениям на датчике.
Термоголовка на радиатор отопления монтируется в горизонтальном положении (параллельно полу) на подающей части трубопровода радиатора. Кроме этого стрелка на корпусе термостатической головки обязательно должна совпадать с направлением потока теплоносителя.
Она не должна подвергаться воздействию источников тепла или прямых солнечных лучей, не должна быть закрыта декоративными элементами интерьера, так как при этом искажается измеряемая температура воздуха и терморегулятор не может эффективно выполнять свои функции. В случае если иное расположение термоголовки невозможно, то используются специальные выносные датчики, позволяющие добиться наибольшей точности поддерживаемой температуры в помещении.
На «обратке» радиатора, как правило, устанавливают запорный вентиль, который в случае необходимости обеспечит произвести демонтаж или чистку батареи без отключения всей системы отопления от стояка, а также выполняет функцию первичной балансировки по расходу теплоносителя радиатора. После окончания отопительного сезона терморегулятор необходимо полностью открыть, повернув ручку термоголовки против часовой стрелки, что предотвратит образования осадка на седле клапана.
Виды термостатических головок:
Термоголовка для радиатора отопления
Стандартная термостатическая головка радиатора отопления устанавливается на радиаторные вентили и осуществляет регулировку объема теплоносителя поступающего в данный тепловой прибор.
Если температура в помещении достигла заданного на термоголовке значения — она начинает перекрывать доступ теплоносителя в радиатор,что приводит к уменьшению отдачи тепловой энергии конкретным прибором . При снижении температуры ниже заданного значения- термостатическая головка движением штока увеличивает сечение проходного канала радиаторного вентиля ,что приводит к увеличению объема поступающего теплоносителя и соответственно увеличивает теплоотдачу теплового прибора. Пользователь в итоге получает возможность комфортной настройки температуры в помещении и экономии порядка 15-20% тепловой энергии.
На российском рынке представлено большое количество различных термостатических радиаторных головок и пользователю достаточно сложно разобраться в выборе оптимального варианта.
Основными критериями выбора должны быть: надежный и известный производитель, минимальная инерционность, дизайн, надежность в работе. Если у термоголовки для радиаторов цена низкая, то это должно насторожить покупателя, так как покупка такой головки может быть абсолютно бесполезна. Посадочное место у большинства головок обычно стандартное — под резьбу M 30*1,5 и должно быть выполнено из надежных материалов.
Термоголовка с накладным датчиком
Использование накладного датчика необходимо в случаях, когда радиатор с термостатической головкой закрыт посторонними предметами (декоративная решетка, портьера и т.п.) и работа термоголовки будет некорректна, из-за тепловой «ограниченности» пространства вокруг неё. Используя накладной датчик ,можно установить место температурного «съёма» для термоголовки. Датчик крепится обычно на стене и по капиллярной трубке управляет работой головки. Подробнее: Caleffi…
Развитием данной технологии стало появление термостатических головок с дистанционной регулирующей ручкой. Управляющее устройство также вынесено за пределы радиаторной зоны и позволяет регулировать температуру в помещении без доступа к термоголовке. Подробнее: Caleffi…
Термоголовка с выносным датчиком
Применение термостатических головок с выносными датчиками чаще всего оправдано, если в доме или квартире используется система отопления водяной «теплый пол».
Если радиаторный терморегулятор отлично справляется с поддержанием температуры в помещении, то в системе теплого пола необходимо регулировать температуру именно нагреваемой поверхности, что весьма проблематично сделать, используя простой комнатный термостат.
Для систем теплого пола важно поддерживать температуру 25-26 градусов, это оптимальный показатель для комфортного пребывания в помещении и, что важно, такая температура пола не приведет к растрескиванию стяжки из-за высокой температуры теплоносителя.
Для этого термоголовка с выносным датчиком устанавливается на трехходовой клапан, а выносной датчик закрепляется на трубе. Подробнее…
Электронные термоголовки
В последнее время широкое распространение получили электронные термоголовки с сенсорными или жидкокристаллическими экранами, обеспечивающие повышенную точность поддержания температуры в помещении и практически исключающие участие человека в процессе регулировки.
Так же важным преимуществом таких электронных термоголовок является их «нулевая» инерциальность, так как корректировка теплоотдачи радиатора происходит сразу после изменения комнатной температуры (у обычных термоголовок порядка 20-40 минут).
Программирование по дням недели позволяет настроить данную головку под любую тепловую потребность клиента в различные дни, что приводит к существенной экономии на отоплении.
Беспроводные термоголовки
Беспроводные термоголовки управляются комнатным термостатом или пультом управления отопления по радиоканалу или по беспроводной сети.
При этом обеспечивается повышенная точность регулировки, возможность управление температурой в помещении с несколькими радиаторами с одного прибора (или регулировка температуры в различных помещениях при помощи единого контроллера), постановка суточных или недельных задач тепловой системе помещения. Это еще один шаг на пути создания систем отопления «умный дом».
Производители: Caleffi, Oventrop, Comap, Frontier, Salus.
Управление радиатором отопления при помощи радиоуправляемых термостатических головок осуществляется по двум принципам:
1. Пульт управления отоплением находится в удобном для пользователя месте (возле входной двери или в центральной комнате) и при его помощи пользователь задает необходимую температуру в помещениях. При этом пульт управления радиаторами отопления температуру не фиксирует, а только даёт команды на ее поддержание. Приняв информацию, термостатическая головка дистанционного управления начинает «анализировать» температуру вокруг себя и в зависимости от полученных данных открывает или закрывает клапан радиатора. В этом случае беспроводная термоголовка выступает в роли «актюатора», регулирующего температуру согласно установленных параметров и данных встроенного в нее датчика. Например, система Caleffi.
2. Управление беспроводной головкой происходит по данным с термостата, расположенного непосредственно в контролируемом помещении. Термостат «снимает» температурные показания в месте своей установки и даёт команду термостатической головке дистанционного управления на работу теплоотдачей радиатора. Например, система Frontier, Salus.
Данные системы радиаторного отопления очень удобны, особенно в домах, управляемых при помощи GSM смартфонов, так как к GSM приемнику зачатую невозможно подключить несколько температурных датчиков. Наличие беспроводных термоголовок помогает пользователю настраивать точную работу каждой из них, не затрачивая на данную процедуру много времени, а также получить настоящий комфорт, в виду малой их инерциальности и наличию внешних датчиков.
Компания Salus Controls действительно совершила технический прорыв, выпустив на рынок систему отопления «умный дом» Salus iT600, в которой, в качестве одного из элементов, используются беспроводные термоголовки для радиаторов.
На какие типы радиаторов можно устанавливать термоголовки?
Можно монтировать на биметаллические, стальные и алюминиевые батареи, а на чугунные, из-за высокой тепловой инертности этого сплава, устанавливать не рекомендуется.
Термоголовка какого производителя лучше?
На рынке терморегуляторов для радиаторов отопления имеется несколько безусловных компаний лидеров: британская Salus Controls, датская Danfoss, итальянская Caleffi и немецкая Oventrop, ассортимент продукции которых просто поражает обилием самых разнообразных моделей. Термоголовки этих производителей обладают отменным качеством и надежностью, выбор за Вами, все зависит только от Ваших потребностей и финансовых возможностей.
Купить радиаторную термоголовку CALEFFI
Наши специалисты помогут Вам подобрать, а также смонтировать Термоголовку на радиатор, найдут приемлемое решение по цене.
Вы останетесь довольны, сотрудничая с нами!
Устройство и принцип работы регулятора давления
Редуктор давления – прямого действия состоит из двух основных конструктивных элементов – исполнительного механизма и регулирующего /дроссельного/ органа. Основным рабочим органом исполнительного механизма является чувствительный элемент, сравнивающий текущую величину давления рабочей среды с сигналом – задатчика. Исполнительный механизм регулятора давления служит для преобразования командного сигнала в регулирующее воздействие. Исполнительный механизм управляет перемещением регулирующего органа редуктора, которое осуществляется за счет энергии потока среды.
Виды редукторов давления
В зависимости от направления действия редукторы давления делятся на следующие основные типы.
Регулятор давления «до себя». Функцией регулятора данного типа является поддержание заданной величины давления среды в контуре системы или на участке, расположенном до клапана.
Регулятор давления «после себя». Функцией регулятора данного типа является поддержание заданной величины давления среды в контуре системы или на участке, расположенном после клапана.
Регулятор перепада давления. Функцией регулятора данного типа является сохранение заданного перепада давления в системе или технологической установке, последовательно соединенной с клапаном (оборудование поддерживает стабильную разницу давлений в установке между двумя импульсными трубками).
Принцип действия квартирных регуляторов давления основан на уравновешивании усилий, создаваемых давлений на входе и выходе за счет отношения площадей, на которые воздействуют эти давления /рис. 3/.
Рис. 3. Принцип действия квартирных регуляторов давления
Обезопасим сантехнические приборы от скачков давления
+7-932-2000-535Давление на входе – Рвх воздействует на малый поршень, стремясь его открыть. За счет дросселирования в золотнике, связанном с малым поршнем, давление уменьшается до – Pвых. Это пониженное давление воздействует на большой поршень, стремясь закрыть золотник. Пружина большого поршня поддерживает золотник открытым, когда давление на входе ниже настроечного. Вместо большого поршня может использоваться мембрана. В номенклатуре компании – Valtec Base, имеются редукторы давления четырех типов. Они широко используются в квартирных узлах ввода водопровода.
Отопление и водоснабжение – многогранный инженерный процесс,
требующий знаний и умений ПРОФЕССИОНАЛА.
Проясним Вашу ситуацию и ответим на вопросы бесплатно +7-932-2000-535
Сантехнические работы Тюмень
Принцип работы радиатора
Содержание
— Конвекция и излучение, два основных принципа
— Понятие инерции
— Различные системы отопления
— Электрический радиатор или горячая вода?
Конвекция и излучение, два основных принципа
Домашнее отопление — это применение того, что в физике известно как теплопередача.Основной принцип прост: если два тела не имеют одинаковой температуры, они будут обмениваться теплом, пока не достигнут теплового равновесия.
Горячее тело (здесь радиатор) и холодное тело (здесь ваше тело) обмениваются теплом тремя способами: теплопроводностью, конвекцией и излучением.
Возьмем, к примеру, чашку чая.По проводимости
— Теплообмен происходит при прямом контакте: вы окунаете губы в еще дымящийся чай, вы получаете ожог, это признак (болезненный!), Что произошла передача тепла!
— Следовательно, теплопроводность не используется для нагрева (кроме случаев, когда вы кладете полотенце на радиатор).
Конвекцией
Теплообмен осуществляется жидким посредником, который «переносит» молекулы тепла. Здесь воздух играет эту роль.
Мы различаем:
— Естественная конвекция, при которой движение воздуха происходит самопроизвольно и свободно. Например, чашка чая все еще дымится, горячий воздух поднимается вверх.
— Принудительная конвекция, движение воздуха активируется для ускорения теплообмена между двумя телами — например, когда вы подаете на чашку чая, чтобы она быстрее остыла.
Излучением (также называемым излучением)
— Теплообмен осуществляется электромагнитным излучением.
— Источник тепла излучает инфракрасное излучение и согревает вас на расстоянии. Чтобы увидеть это, положите руки на чашку горячего чая и почувствуйте тепло, даже если контакта нет.
Каким бы ни был излучатель, эти 3 механизма работают вместе. Согласно устройствам, один из этих механизмов является привилегированным.
Понятие инерции
Термическая инерция — это способность устройства или тела поддерживать свою температуру на постоянном уровне:
— Для нагревателя инерция представляет собой способность длительно и постоянно рассеивать тепло.
— Нагреватель с хорошей инерцией не нагревается рывками.
Различные системы отопления
Системы и источники энергии
Выбор систем отопления дома широк. Действительно, систем и источников энергии несколько:
— с котлом , называемым «сжигание»: газовый, дровяной, масляный или смешанный;
— электрический;
— возобновляемая энергия: тепловой насос, солнечная энергия и т. Д.
Диффузионные аппараты
Также существует несколько типов диффузионных устройств:
— радиаторы горячая вода или электрические;
— теплый пол;
— потолочное отопление;
— настенное отопление;
— плинтус с подогревом.
Совместимость: какое устройство для какого отопления?
Выбор между радиатором горячей воды и электрическим радиатором зависит от типа выбранной системы:
— Водяные радиаторы работают с системой сжигания: котел сжигает газ, дрова или масло, нагревает воду и прогоняет ее по трубам в радиаторы.
— Электрические радиаторы, естественно, питаются от электричества и подключаются непосредственно к электросети.
Однако выбор между радиаторами и напольным отоплением не зависит от выбора источника энергии.Вы можете комбинировать радиаторы и теплый пол как с газовым, так и с электрическим отоплением или тепловым насосом.
Выбор источника энергии является самым важным. Мы предлагаем вам начать с этого, только потом выбирать диффузионные устройства.
Электрический или водяной радиатор: критерии выбора
Перед выбором
Выбор системы отопления требует индивидуального изучения вашего дома, существующей системы отопления, если таковая имеется, и ваших потребностей в отоплении.
Таким образом, перед выбором между электрическими радиаторами и радиаторами с горячей водой рекомендуется выполнить оценку Home Performance Assessment .
Более того, без хорошей теплоизоляции вашего дома будет бесполезно вкладываться в эффективную систему отопления.
Акцент на электрическое отопление
Вопреки распространенному мнению, электрическое отопление не обязательно потребляет больше энергии, чем горячее водоснабжение.
Замена старой электроустановки на новую, более производительную, позволяет сэкономить до 25%!
Кроме того, электрическая радиаторная система отопления дешевле и сложна в установке, чем система водяного отопления, особенно в проектах реконструкции.
Наконец, он не требует специального обслуживания, за исключением, возможно, время от времени легкого протирки.
Акцент на водяное отопление
Водяное центральное отопление проще реализовать при строительстве дома. Однако отремонтировать дом все же можно, но установить его будет сложнее.
Бойлеры становятся все более эффективными, загрязняющими все меньше и меньше и даже полностью экологичными. Они добились огромного прогресса за последние годы, как и радиаторы.
Кроме того, некоторые котлы имеют право на налоговую льготу, которая позволяет вам частично погасить ваши инвестиции.
Надеюсь, этот пост помог вам понять принцип работы радиатора и сделать выбор между радиатором или бойлером. Пожалуйста, не забудьте поделиться своим мнением в комментариях ниже.
Как работают масляные радиаторы?
Внутреннее устройство нашей бытовой техники — чудесная загадка, которую мы никогда не ставим под сомнение, и пока они выполняют свою работу, почему бы нам? Дело не в том, что вам нужна электрическая схема тостера для его использования. Однако наиболее любопытным из нас нравится узнавать все до мельчайших подробностей о наших продуктах, поэтому, если вы один из таких людей, этот блог определенно для вас. Электрические масляные радиаторы — одни из самых энергоэффективных обогревателей, но как они работают? Для некоторых они могут быть очевидными, но вы будете удивлены заблуждениями, которые все еще окружают эту форму нагревательного прибора. Вот почему мы вплотную подошли к маслонаполненным радиаторам, чтобы понять, что ими движет.
Основы
Масляные радиаторы работают с использованием электрического элемента для нагрева резервуара с термомаслом внутри прибора. Электрический элемент полностью погружен в масло, поэтому при нагревании все создаваемое тепло передается окружающей жидкости. Вы можете сравнить масляные радиаторы с моделями центрального отопления, поскольку в обоих типах используется нагретая жидкость для передачи тепла по поверхности прибора. Однако ключевое различие между ними заключается в том, что масляный радиатор использует свой собственный внутренний нагревательный элемент для нагрева жидкости внутри, тогда как вода для радиатора центрального отопления нагревается снаружи от прибора котлом и зависит от системы взаимосвязанных труб. По сути, радиатор центрального отопления — это просто пустая оболочка до тех пор, пока через него не течет горячая вода, но масляный электрический радиатор — это универсальный автономный блок, который можно установить практически где угодно.
Как работает нагревательный элемент
Нагревательный элемент внутри маслонаполненного радиатора представляет собой просто катушку из металлического резистивного провода, вставленную в основание. Когда подается электрический ток, электроны сжимаются друг с другом при движении по узкой длине провода, создавая трение и тепло при движении.По мере того как провод нагревает масло, тепло передается корпусу радиатора, который, в свою очередь, нагревает объем воздуха в помещении. Форма и размер нагревательного элемента могут различаться у разных производителей, но основной принцип всегда остается одним и тем же.
Конвекция внутри, конвекция снаружи
Мы рассмотрели процесс обогрева, но что на самом деле происходит внутри обогревателя, чтобы сделать наши жилые комнаты такими уютными и комфортными? Все связано с конвекцией — формой передачи тепла, которая имеет место в газах и жидкостях, когда их атомы перемещаются из одного места в другое. Когда масло внутри радиатора нагревается, молекулы начинают циркулировать в конвекционном цикле. При расширении теплое масло поднимается к верхней части радиатора, выталкивая любое более холодное масло вниз к элементу, готовому к повторному нагреву. Если вы обнаружите, что эта часть поверхности радиатора холоднее, чем остальная, это происходит из-за цикла конвекции жидкости, происходящего внутри обогревателя. Когда теплое масло течет в этом непрерывном цикле, тепло передается к корпусу радиатора, и начинается другой процесс конвекции, но на этот раз за пределами нагревателя.
Как и все радиаторы, маслонаполненные модели отдают две трети тепла в виде конвекции, и для максимальной эффективности многие из них имеют рифленые корпуса или ребра для максимального контакта с воздухом. Вот почему портативные масляные радиаторы меньшего размера, как правило, имеют очень похожую конструкцию с множеством плотно расположенных колонн для увеличения площади поверхности. На первый взгляд это может быть неочевидным, но в наших более крупных масляных радиаторах также используется та же концепция, хотя их ребра скрыты за гладким, современным внешним видом, сочетающим эффективность и эстетику.
Где возникают заблуждения…
Те, кто плохо знаком с маслонаполненными радиаторами, могут ошибочно полагать, что им необходимо периодически доливать свой прибор, но это не так. Эти радиаторы представляют собой герметичные блоки, а масло внутри используется в качестве теплового резервуара для элемента, а не в качестве расходуемого топлива. Пока радиатор работает правильно, это масло никуда не денется. В том крайне маловероятном случае, когда вам понадобится пополнить один из этих продуктов, важно, чтобы вы оставили эту задачу на усмотрение профессионала, потому что это может создать серьезную опасность, если оставлено на руках у любителя.Причина этого в том, что все маслонаполненные радиаторы заполнены только до определенного уровня. Это не производитель, пытающийся урезать клиентов, скупясь на наполнение — воздушный зазор в верхней части нагревателя жизненно важен для здоровья прибора, поскольку обеспечивает масло внутри места для безопасного расширения. Еще одна причина, по которой вы никогда не должны пытаться заправлять маслонаполненный радиатор, заключается в том, что производители не всегда используют один и тот же раствор для заливки своей продукции. Если одна компания может использовать минеральное масло, другая может использовать специально разработанную жидкость с особой формулой, так что дело не в том, чтобы взять универсальное масло для радиатора и просто долить его.Однако, повторяю, большинство маслонаполненных радиаторов без проблем работают в течение многих лет, поэтому вам не нужно беспокоиться о текущем техническом обслуживании. Если у вас все же возникнут проблемы, просто убедитесь, что вы не используете подход «сделай сам»; всегда обращайтесь к поставщику или производителю за указаниями.
Наши масляные электрические радиаторы
Масляные радиаторы, благодаря своей надежности и эффективности, являются опорой домашних хозяйств по всей стране. Если вы ищете масляные радиаторы с новейшими технологиями, наша линейка Haverland Designer TT была недавно обновлена в 2018 году и теперь предлагает больше функций энергосбережения, чем когда-либо.Мы надеемся, что этот блог осветил для вас мир маслонаполненных радиаторов, но если вам нужна дополнительная информация о нашем ассортименте, наша команда по продажам всегда готова помочь.
Балансировка систем отопления — полное руководство
Некоторые системы отопления могут быть настоящим кошмаром для балансировки, независимо от того, сколько вы боретесь с этим, вы просто не можете запустить все сразу!
Обычно это происходит в более крупных системах, и многие скажут, что это означает, что вам, вероятно, необходимо гидравлическое разделение.Тем не менее, у нас есть несколько советов, которые мы усвоили по ходу дела, которые сэкономят ТОННУ времени на балансировке в конце работы. Сделать те системы, которые невозможно сбалансировать, очень просто !!
Так что же такое балансировка системы отопления?
Для балансировки системы отопления необходимо просто убедиться, что все радиаторы или излучатели нагреваются равномерно. Для систем, использующих погодную компенсацию или компенсацию нагрузки, это гарантирует, что у вас в каждой комнате объекта будет точная температура, а не в некоторых комнатах слишком жарко, а в некоторых слишком холодно. Слишком большой поток к радиаторам приведет к перегреву помещения, меньший поток — к недогреву.
В более старых системах включения / выключения это было бы больше связано со временем нагрева и, возможно, меньшей проблемой при условии, что у вас есть TRV и ваша эталонная комната (комната с термостатом) немного сбалансирована. Эта статья, как и все статьи Heat Geek, на самом деле не о системах включения / выключения, а больше о современных модулирующих системах отопления, которые должны быть стандартом.
Балансировка НЕ увеличивает конденсацию на котле вопреки распространенному мнению.Правильный перепад температуры в системе достигается за счет управления скоростью насоса. Однако, если у вас нет насоса на высокой настройке и вы не ограничиваете все свои клапаны, чтобы замедлить обратный поток, это было бы экспоненциально расточительно с энергией насоса. Главное — не задушить насос и не тратить энергию впустую. У вас всегда должен быть хотя бы один полностью открытый клапан.
Неправильная балансировка или ее отсутствие снижает мощность системы в целом, это будет выглядеть как меньшая дельта Т для котлов, работающих только на отопление, где насосы не связаны с горелкой.Подробнее в нашей статье увеличивает ли эффективность балансировки котла?
Почему балансировать некоторые системы отопления ТАКОЕ БОЛЬНО?
Есть несколько основных причин, по которым балансировка становится сложной и понимание того, почему ваш первый шаг. Вот краткий обзор со ссылками на дополнительную информацию.
Первая и основная причина заключается в том, что в системе присутствует высокий перепад давления. Это может быть связано с использованием трубопровода меньшего диаметра или с тем, что система слишком большая / имеет длительный срок службы.Чтобы понять больше, взгляните на «взаимосвязь давления и потока».
Есть два способа обойти эту проблему;
Мы можем использовать один из многих доступных нам методов компоновки трубопроводов, чтобы минимизировать перепады давления, более подробная информация об этом находится в конце статьи, и мы можем использовать более совершенные балансировочные клапаны!
Мы не можем не переоценить это обстоятельство, неправильные запорные клапаны могут вызвать у вас полную головную боль, и большинство из них не подозревают, что есть разница!
Другие причины могут быть связаны с используемым методом балансировки.
Например, некоторые инженеры пытаются добиться идеального перепада температур (или DT) 20 ° C на каждом радиаторе. На наш взгляд, это не нужно и сложно.
Еще одна проблема — некоторые инженеры при балансировке выставляют котел на полную мощность (режим трубочиста). Это заставит котел попытаться ввести максимальную мощность котла в систему, которая, скорее всего, будет иметь мощность радиатора только часть размера котла. Это всегда будет приводить к крошечной дельте t, поскольку система не может переносить тепло.Это, в свою очередь, также не будет иметь точного расхода, когда котел вернется в нормальный режим работы, и означает, что вы будете балансировать для сценария, который никогда не произойдет.
Наконец, хотя в большинстве случаев они могут быть достаточно хорошими, они могут использовать совершенно неправильные клапаны! Обратите внимание, прежде чем мы сказали, что клапаны лучше, однако некоторые запорные клапаны вообще не предназначены для балансировки !! Снова подробнее здесь . .. или может быть лучший вариант, описанный ниже …
как бы мы посоветовали сбалансировать систему отопления?
Перво-наперво, чтобы получить правильную скорость потока вокруг каждого излучателя / радиатора, вам необходимо получить правильную скорость потока вокруг всей системы.Для этого нам необходимо отрегулировать производительность насоса в соответствии с системой.
Слишком низкая скорость потока будет означать, что объекту может быть сложно достичь нужной температуры, поскольку средняя (средняя) температура радиаторов слишком низкая. Если насос работает слишком быстро, это приведет к экспоненциальной потере мощности, а также уменьшит эффект конденсации в котле за счет повышения температуры обратной магистрали. У инженеров может возникнуть соблазн задушить насос, перекрыв клапаны, чтобы замедлить скорость потока, это снова приводит к потере еще большей мощности.
К счастью, почти все современные модулирующие котлы имеют управление насосом, связанным с горелкой. Это постоянно регулирует скорость насоса, чтобы обеспечить правильный расход относительно подводимого тепла. Быстро проверьте свой источник тепла, чтобы убедиться, что он имеет приблизительную правильную DT / скорость потока, для получения дополнительной информации по уточнению и настройке скорости вашего насоса щелкните здесь. Не волнуйтесь, если ваше DT выходит из строя на 10-20%, это действительно не имеет большого значения на данном этапе, и установщики могут тратить время зря и зацикливаться на достижении этого.
Подробнее об этом в нашей статье «Ложь DT20». Однако более точным ориентиром является DT, которое составляет около 30% от температуры подачи.
Например; Если у нас температура подачи 70 ° C (70 x 0,3), получаем DT 21 ° C. Если ваша температура подачи составляет 50 ° C, это даст DT 15 ° C (50 X 0,3) и так далее. Это не совсем точно, это просто для того, чтобы получить правильную скорость потока. Вы можете использовать более сложные суммы, но мы не будем терять время зря.
В любом случае, теперь ваш расход находится в правильном положении, пришло время, наконец, сбалансировать радиаторы.
Как сбалансировать радиаторы
Здесь мы можем использовать несколько разных методов, важно, что ни один из них не является правильным или неправильным в пределах разумного. Просто некоторые методы займут больше времени, чем другие, а некоторые позволят достичь более точной комнатной температуры! Также предположим, что мы балансируем модулирующий котел без гидравлического разделения.
Два основных способа балансировки радиаторов (если вообще используются) инженеры-теплотехники — это либо «измерить среднюю температуру радиатора», либо отрегулировать запорный экран до тех пор, пока они не почувствуют одинаковую среднюю температуру.На другом конце спектра они используют датчики температуры на каждом конце радиатора (подающей и обратной линии) и балансируют для определенного перепада температуры.
Подключение термометра к патрубкам подачи и возврата радиаторов и регулировка запорных клапанов для обеспечения одинакового перепада температуры обеспечивает правильность расхода по отношению к конкретному размеру или мощности радиатора.
Однако, если у вас есть некоторый перепад температуры вдоль подающей трубы перед радиатором, это даст вам другую «среднюю температуру» на каждом радиаторе.Средняя температура представляет собой среднее значение температуры подачи и возврата. Чтобы решить эту проблему, добавьте температуру потока к температуре возврата и разделите на 2.
Мы не видим большой проблемы с немного разными средними температурами, но это будет означать, что вы потратили довольно много времени на что-то, что в любом случае не так точно, так как реальная мощность радиаторов будет отличаться.
При использовании модулирующих элементов управления мы снова не видим особых проблем с использованием сенсорного экрана, а не термометра, при условии, что температура в комнате достигает точной температуры с любым TRV, установленным на максимум.Т.е. температура подачи нацелена на комнатную температуру, а не на TRV, так как это потенциально может привести к более сильному сгоранию котла.
Как описано выше, вместо этого вы могли бы сбалансировать, чтобы обеспечить одинаковую «среднюю» температуру на каждом радиаторе. Для этого определите среднюю температуру источника тепла (примерно) и отрегулируйте каждый запорный клапан, пока у вас не будет одинаковой средней температуры на каждом радиаторе.
По сути, это приведет к разному падению DT / температуры на всех радиаторах, но средняя температура радиатора будет одинаковой.Это сработает, но опять же может занять много времени и будет неудобно, если ваш котел будет работать нормально. Важно отметить, что это может не дать вам идеального баланса, ведь наша цель — это точная комнатная температура, а не точная температура радиатора.
Расчеты теплопотерь неточны, и даже если бы они были, они могли быть выброшены из-за множества вещей, таких как отсутствие изоляции, ошибки в расчетах, использование комнат или неправильный выбор радиатора. Лично мы думаем, что оба приведенных выше варианта — занятие неблагодарное.
Уравновешивание температуры обратного потока
Вместо этого мы предлагаем сделать так, чтобы после установки максимального значения TRV вы просто ощущали (или измеряли, если хотите) температуру обратной линии радиатора, когда система находится на «расчетной температуре подачи» (требуется температура подачи при -2 ° C. приблизительная температура наружного воздуха) и убедитесь, что температура в помещении не превышает 20/21 ° C. По крайней мере, для начала.
В подавляющем большинстве систем температура подачи к каждому радиатору будет в целом одинаковой, нет смысла вообще их измерять.Прикосновение к радиатору для определения средней температуры также оставляет небольшую погрешность. Однако измерение температуры обратного теплоносителя имеет, безусловно, наибольшую погрешность.
Чтобы уточнить, предположим, что котел с DT 20 ish, возврат радиатора, который на выходе 8 ° C, будет иметь среднюю температуру, которая будет только 4 ° C на выходе.
Рисунок 1В то время как, если бы мы чувствовали среднюю температуру радиатора и делали ту же ошибку 8 ° C, у нас было бы совершенно разных DT , и, в свою очередь, сильно различались бы скорости потока через каждый излучатель.
Например.
Рис 2Поскольку измерение температуры обратного трубопровода является более важной переменной, многие системы могут быть достаточно близкими, просто нащупав обратный трубопровод рукой. Для большей точности, хотя вы можете использовать термометр определенного описания или их комбинацию, это первая точка, в которой вы значительно увеличите скорость и точность балансировки.
Точность не обязательно должна быть идеальной прямо сейчас, постарайтесь добиться того, чтобы все температуры обратной воды приблизительно совпадали.
В более крупных системах вы можете обнаружить, что вам пришлось настолько ограничить ближайшие радиаторы, что вам необходимо увеличить скорость насоса. Это связано с тем, что перепад давления на подаче и обратной линии намного больше в более крупных системах, чтобы получить достаточно высокий расход. Подробнее об этом в понимании давления и расхода.
Вернитесь к насосу и измерьте DT на источнике тепла и приблизительно отрегулируйте производительность насоса, если необходимо, но это маловероятно для большинства систем.
Опять же, вам не нужно точно согласовывать температуру обратки. Размер радиатора никогда не будет точным, так как радиатор будет увеличен или уменьшен до ближайшего радиатора, а также — комнаты разделяют тепло.
Итак, это не должно было занять много времени. Теперь вы можете либо попросить пассажира следить за температурой в помещении, и, если она немного высока, вы можете немного позже уравновесить или показать их. Если в комнате немного низкая температура, увеличьте скорость потока (уменьшите DT), чтобы увеличить мощность радиатора, хотя, по нашему опыту, это маловероятно.
Мы понимаем, что в большинстве систем по-прежнему используется управление включением / выключением вместо модулирующего управления, такого как погодная компенсация или компенсация помещения. Для этого мы бы посоветовали ориентироваться на температуру обратки примерно, сбалансировать контрольную комнату (комнату с термостатом) до чуть более широкого DT, а затем позволить TRV делать свое дело. В качестве альтернативы используйте автоматические балансировочные клапаны, предлагаемые IMI, Honeywell или Danfoss.
, однако, если вы приверженец точности, вы можете перейти на следующий уровень…
Закройте все внутренние и внешние двери, окна и шторы (для предотвращения попадания солнечного света) в собственность и установите плавное регулирование для достижения максимальной температуры, при которой вам комфортно работать.
Затем вам нужно будет измерить температуру в каждой комнате индивидуально и отрегулировать запорный экран, чтобы в каждой комнате была одинаковая температура. Пойдите в каждую комнату и при необходимости настройте каждую запорную заслонку, приоткройте запорный вентиль очень немного, если в комнате прохладнее, чем ваша целевая температура, и закройте его, если в комнате слишком жарко.
Это гораздо более эффективное использование вашего времени, чем установка одного и того же DT для каждого радиатора, как уже упоминалось, мы ориентируемся на комнатную температуру , а не на температуру радиатора.
При этом помните о других переменных, таких как усиление солнечной энергии. Также обратите внимание, что чем шире разница между внутренним и внешним пространством, тем более точным будет этот метод. Этого можно достичь, либо дождавшись более холодного дня, либо увеличив регулирующий термостат на более высокое значение, либо и то, и другое. Эта последняя регулировка, скорее всего, просто покажет вам, насколько проста ваша система и что собственность разделяет большую часть ее тепла.
После того, как балансировка завершена и вы довольны своей кривой нагрева (при необходимости), вы можете настроить обратно свой TRV, чтобы ограничить внутренний выигрыш.
Наконечник . Если вы балансируете полотенцесушители (клапаны полотенцесушителей открываются очень быстро), закрывайте обе стороны, а не только одну. Закрыв одну сторону, а затем другую, вы увеличите вращение клапана для меньшего изменения потока, что фактически означает, что вы улучшите характеристику открытия.
Как уже упоминалось, это предложение по балансировке предполагает, что вы балансируете только современный модулирующий котел.Это будет работать и для всех других типов систем, но есть и другие варианты, если ваш модулирующий котел не контролирует скорость потока в вашей системе.
Перед чтением следующего раздела было бы полезно понять давление и расход!
Какой тип насоса вы пытаетесь сбалансировать?
Если у вас старый котел, в вашей системе нет модулирующего управления или гидравлического разделения, доступны и другие методы балансировки. ИЛИ вам может даже не понадобиться использовать запорные клапаны для балансировки!
Например, в коммерческом мире необходимо знать, как вы собираетесь управлять каждой цепью.Затем вы выберете тип управления насосом в сочетании с типом клапана, который дополняет его, чтобы эффективно распределять поток.
В насосахиспользуются различные методы управления потоком и экономии энергии. Вы можете подключить горелку, управлять DT, регулировать перепад давления, регулировать внешний датчик, постоянное давление, постоянную скорость, пропорциональное давление и т. Д. (Статья по этому поводу).
Но обычно их можно разбить на 2 группы: насосы, которые изменяют скорость до заданного давления, и насосы, которые изменяют давление для достижения заданной скорости.Затем вы должны выбрать конкретный тип клапана, который будет дополнять его.
Проблема современных бытовых модулирующих котлов в том, что они изменяют как давление, так и расход. Это может быть очень сложно управлять, и поэтому единственный оставшийся вариант — уравновесить скромный замок, которого более чем достаточно для дома, мы могли бы добавить. Однако для балансировки не все замки одинаковы! Чего вы не знали о запорных клапанах!
Система Grunfos Alpha2
Система Grundfos Alpha2 будет работать с любой из этих логических схем насоса или с любым клапаном.Однако вы должны использовать их помпу Alpha 3.
После заполнения системы и очистки от воздуха вы подключаете внешний модуль Bluetooth к телефону и к помпе. Затем ваш телефон проинструктирует вас, насколько необходимо отрегулировать запорный экран или какие предустановленные значения TRV, ограничивающие поток, следует отрегулировать. После завершения будет создан отчет, показывающий, что вы выполнили баланс, который может быть полезен для предстоящего принятия закона о балансировании.
Клапаны автоматические балансировочные
Для насосов, которые нацелены на фиксированное давление и изменяют расход, я бы рекомендовал TRV с ограничением потока или TRV с автоматической балансировкой.
Автоматические балансировочные клапаны, также известные как независимое от давления регулирование (PIC), обычно представляют собой коммерческие клапаны со встроенным ограничителем расхода, и это просто их версии TRV. Они включают селектор расхода под головкой TRV и пронумерованы, скажем, от 1 до 5. Каждое число соответствует расходу, который будет в инструкциях производителя, просто выберите требуемый расход и отрегулируйте! БОЛЬШОЙ!
Мы настоятельно рекомендуем осторожно настраивать насос с их помощью.Если насос рассчитывает, что установленный перепад давления на клапане ниже 1 метра напора, у них нет полного контроля, и другие радиаторы могут столкнуться с проблемами. Тем не менее, эти клапаны обычно имеют ограничительные пути небольшого диаметра (и повышенный авторитет клапана), поэтому это маловероятно. Однако обратите внимание: если вы запустите насос при более высоком перепаде давления, чем требуемый минимум, потребляемая мощность вашего насоса увеличится.
Например, если вы можете получить достаточный поток к радиаторам с напором 3 метра, но насос оставлен на высоте 6 м, вы удвоите вашего энергопотребления. Вы должны обязательно поэкспериментировать с понижением скорости насоса, пока поток не начнет ухудшаться. Если вы удвоите свое сопротивление, вы удвоите потребление энергии, это прямая линейная зависимость. Узнать больше
Если ваша помпа нацелена на скорость, вам нужно быть еще более осторожным. Если установленная скорость даже немного превышает ваш общий предел расхода через все клапаны вместе взятые, то клапаны будут оказывать экспоненциально большее сопротивление насосу, и насос будет увеличиваться до максимального перепада давления для компенсации.Это потребует максимальной мощности для данного расхода. По этой причине мы всегда советуем оставлять один байпасный радиатор для прохождения любого избыточного потока при использовании этих клапанов.
Мы не рекомендуем эти клапаны для использования с современным модулирующим котлом, который изменяет давление и расход по причинам, описанным выше, или с насосом, управляемым DT. Вот небольшое объяснение.
youtube.com/embed/0iowNpxyHqk?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/> Автоматическая балансировка trvsУ вас также есть доступные клапаны PIC (независимые от давления), которые работают в соответствии с трубопроводом, однако ожидается, что они будут использоваться только с более крупными коммерческими системами.
Единственный другой совет, который мы могли бы дать, когда дело доходит до выбора клапана, — это знать и понимать авторитет клапана и «характеристики открытия» клапана. Это полностью описано в нашей статье «Что вы не знали о lockshield».
Другая переменная в отношении того, требуется ли вам дополнительное время для балансировки или различные типы клапанов, зависит от того, как ваша система имеет трубопроводы, и может быть легче решена путем регулировки при замене котла или установке немного другим способом с самого начала.Компоновка системы также определяет, какую настройку насоса вам следует использовать в идеале.
Схема системы
Установка или регулировка трубопроводов немного другим способом при установке нового котла может обеспечить простую балансировку и даже полностью избавить от необходимости балансировать систему!
Как описано в разделе «Давление и расход», когда вы уравновешиваете систему отопления, вы фактически заставляете каждый контур иметь такое же или подобное сопротивление друг другу. Основная причина того, что системы не сбалансированы и имеют разное сопротивление, — это коммунальные трубопроводы.Это общий трубопровод, который у них всех.
Более близкие радиаторы (или более короткие цепи) будут использовать меньше общих трубопроводов и, следовательно, будут иметь меньшее сопротивление потоку, чем радиаторы, расположенные дальше по линии. Таким образом, вода идет по пути наименьшего сопротивления.
A = ОЧЕНЬ ВЫСОКИЙ ПОТОК B = ВЫСОКИЙ ПОТОК C = ПРАВИЛЬНЫЙ ПОТОК D = СЛИШКОМ МЕДЛЕННЫЙ E = СЛИШКОМ МЕДЛЕННЫЙ ПУТЬЕсть два способа решить эту проблему. Первый — сделать коммунальные трубопроводы большими.Обеспечение большего общего трубопровода означает, что большая часть сопротивления находится в пределах отдельных ветвей трубы, а перепады давления заканчиваются гораздо ближе «из коробки» и даже до того, как вы уравновесите. В отличие от рисунка выше.
Это также увеличивает авторитет клапана вашей системы, поскольку большая часть относительной потери давления приходится на клапан … беспроигрышный вариант!
Многие могут говорить об опасностях низкой скорости. Это никогда не было проблемой для нас в домашних системах, и ваши трубопроводы в любом случае будут иметь негабаритный размер 99% в год, поскольку система модулируется (мы надеемся).Еще одна статья, чтобы разобраться в этом в другой раз.
Второй способ — сделать коммунальные трубопроводы короткими.
Коллекторные системы
Системы коллектораотносятся к тому месту, где вы запускаете поток и возвращаете его в коллектор. Подобно коллектору под полом или, возможно, созданному вами сами. Он может быть расположен в любом месте собственности, но в идеале в центре, а затем разделен на отдельные участки для каждого радиатора или излучателя.
Установка от Дэйва Чорли Сантехника и отоплениеЭто гарантирует, что все радиаторы имеют одинаковое сопротивление общей трубопроводной системы, и, если / когда один из излучателей отключается, воздействие давления на каждый из других излучателей одинаково / похоже.
Коллекторная система упрощает балансировку (при необходимости вообще), поскольку все это находится в одной легко доступной точке.
Система обратного возврата
Первый за последним — это термин, обычно используемый в торговле. Это то же самое, что и в традиционной двухтрубной системе, однако первый радиатор, который питает ваша подающая труба, является последним радиатором в вашем обратном контуре. Это приводит к тому, что все ваши радиаторные цепи имеют одинаковое сопротивление.
Вы можете найти это непрактичным, однако существует столько версий всех этих техник, сколько позволяет ваше воображение.
Например, вместо того, чтобы запускать поток и возвращаться к первому радиатору, затем последовательно ко второму и т. Д. Вы можете запустить поток и вернуться за первый рад к центру собственности, а затем выйти, как диаграмма паука. Затем снова выполните тройник, увеличивая размер первичного трубопровода.
Чем больше вы сможете создать подобного сопротивления, тем больше подойдет режим постоянного давления. Для малоразмерных и плохо спланированных систем лучше выбрать настройку пропорционального давления.Подробнее об этом в другой раз
Ничего из этого не является важным знанием, однако, как только вы поймете теорию, это поможет в процессе принятия решений позже, так что вы сможете принять решение на лету. И, как уже было сказано несколько раз, все это действительно может быть более полезным для более крупных систем.
Это может быть один из последних фрагментов контента, который мы будем публиковать здесь в течение некоторого времени, поскольку мы усерднее работаем над нашим онлайн-видеокурсом, который в настоящее время находится в стадии разработки.
Отопление | процесс или система
Отопление , процесс и система повышения температуры замкнутого пространства с основной целью обеспечения комфорта жителей.Регулируя температуру окружающей среды, отопление также служит для поддержания структурных, механических и электрических систем здания.
Историческая застройка
Самым ранним способом обогрева салона был открытый огонь. Такой источник, наряду с соответствующими методами, такими как камины, чугунные печи и современные обогреватели, работающие на газе или электричестве, известен как прямое отопление, поскольку преобразование энергии в тепло происходит на обогреваемом участке. Более распространенная форма отопления в наше время известна как центральное или косвенное отопление.Он заключается в преобразовании энергии в тепло в источнике вне, отдельно от обогреваемого объекта или объектов или расположенных внутри них; Получающееся тепло передается на объект через текучую среду, такую как воздух, вода или пар.
За исключением древних греков и римлян, большинство культур полагалось на методы прямого нагрева. Древесина была первым топливом, которое использовалось, хотя в местах, где требовалось только умеренное тепло, таких как Китай, Япония и Средиземноморье, использовался древесный уголь (сделанный из дерева), потому что он производил гораздо меньше дыма.Дымоход, или дымоход, который сначала был простым отверстием в центре крыши, а затем поднимался прямо из камина, появился в Европе в 13 веке и эффективно устранял дым и испарения огня из жилого помещения. Закрытые печи, по-видимому, впервые использовались китайцами около 600 г. до н.э. и в конечном итоге распространились по России в северную Европу, а оттуда в Америку, где Бенджамин Франклин в 1744 году изобрел улучшенную конструкцию, известную как печь Франклина. Печи гораздо менее расходуют тепло, чем камины, потому что тепло огня поглощается стенками печи, которые нагревают воздух в комнате, а не пропускают вверх по дымоходу в виде горячих дымовых газов.
Центральное отопление, кажется, было изобретено в Древней Греции, но именно римляне стали лучшими инженерами-теплотехниками древнего мира с их системой гипокауста. Во многих римских зданиях полы из мозаичной плитки поддерживались колоннами внизу, которые создавали воздушные пространства или каналы. На участке, расположенном в центре всех отапливаемых комнат, сжигали древесный уголь, хворост и, в Великобритании, уголь, и горячие газы распространялись под полом, нагревая их в процессе. Однако система гипокауста исчезла с упадком Римской империи, и центральное отопление было восстановлено только 1500 лет спустя.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасЦентральное отопление снова стало использоваться в начале 19 века, когда промышленная революция вызвала увеличение размеров зданий для промышленности, жилых помещений и сферы услуг. Использование пара в качестве источника энергии предложило новый способ обогрева фабрик и заводов, когда пар передавался по трубам. Котлы, работающие на угле, подавали горячий пар в помещения с помощью стоячих радиаторов. Паровое отопление долгое время преобладало на североамериканском континенте из-за очень холодных зим.Преимущества горячей воды, которая имеет более низкую температуру поверхности и более мягкий общий эффект, чем пар, начали осознаваться примерно в 1830 году. В системах центрального отопления двадцатого века обычно используется теплый воздух или горячая вода для передачи тепла. В большинстве недавно построенных американских домов и офисов теплый воздух вытеснил пар, но в Великобритании и на большей части европейского континента горячая вода заменила пар в качестве предпочтительного метода отопления; канальный теплый воздух там никогда не был популярен. Большинство других стран приняли американские или европейские предпочтения в методах отопления.
Системы центрального отопления и топливо
Важнейшими компонентами системы центрального отопления являются устройства, в которых можно сжигать топливо для выработки тепла; среда, транспортируемая по трубам или каналам для передачи тепла в обогреваемые помещения; и излучающее устройство в этих пространствах для выделения тепла либо конвекцией, либо излучением, либо обоими способами. Принудительное распределение воздуха перемещает нагретый воздух в пространство с помощью системы воздуховодов и вентиляторов, которые создают перепады давления. Лучистое отопление, напротив, предполагает прямую передачу тепла от излучателя к стенам, потолку или полу замкнутого пространства независимо от температуры воздуха между ними; Излучаемое тепло устанавливает цикл конвекции во всем пространстве, создавая в нем равномерно нагретую температуру.
Температура воздуха и влияние солнечного излучения, относительной влажности и конвекции — все это влияет на конструкцию системы отопления. Не менее важным соображением является объем физической активности, который ожидается в конкретной обстановке. В рабочей атмосфере, в которой напряженная деятельность является нормой, человеческое тело выделяет больше тепла. В качестве компенсации температура воздуха поддерживается на более низком уровне, что позволяет рассеивать лишнее тепло тела. Верхний предел температуры 24 ° C (75 ° F) подходит для сидячих рабочих и домашних жилых помещений, а нижний предел температуры 13 ° C (55 ° F) подходит для лиц, выполняющих тяжелую ручную работу.
При сгорании топлива углерод и водород реагируют с атмосферным кислородом с выделением тепла, которое передается из камеры сгорания среде, состоящей из воздуха или воды. Оборудование устроено таким образом, что нагретая среда постоянно удаляется и заменяется охлаждающей подачей — , т.е. путем циркуляции. Если среда является воздухом, оборудование называется топкой, а если среда — водой, бойлером или водонагревателем. Термин «бойлер» более правильно относится к сосуду, в котором производится пар, а «водонагреватель» — к сосуду, в котором вода нагревается и циркулирует ниже ее точки кипения.
Природный газ и мазут являются основными видами топлива, используемыми для производства тепла в котлах и печах. Они не требуют труда, за исключением периодической очистки, и они обрабатываются полностью автоматическими горелками, которые могут регулироваться термостатом. В отличие от своих предшественников, угля и кокса, после использования не остается остаточной золы для утилизации. Природный газ вообще не требует хранения, а нефть перекачивается в резервуары для хранения, которые могут быть расположены на некотором расстоянии от отопительного оборудования.Рост объемов отопления на природном газе был тесно связан с увеличением доступности газа из сетей подземных трубопроводов, надежностью подземных поставок и чистотой сжигания газа. Этот рост также связан с популярностью систем теплого воздуха, к которым особенно хорошо подходит газовое топливо и на которые приходится большая часть природного газа, потребляемого в жилых домах. Газ легче сжигать и контролировать, чем нефть, пользователю не нужен резервуар для хранения и он платит за топливо после того, как он его использовал, а доставка топлива не зависит от капризов моторизованного транспорта.Газовые горелки обычно проще, чем те, которые требуются для жидкого топлива, и имеют мало движущихся частей. Поскольку при сжигании газа выделяются ядовитые выхлопы, газ из обогревателей должен выходить наружу. В местах, недоступных для трубопроводов природного газа, сжиженный нефтяной газ (пропан или бутан) доставляется в специальных автоцистернах и хранится под давлением в доме до тех пор, пока он не будет готов к использованию так же, как природный газ. Нефтяное и газовое топливо во многом обязано своим удобством автоматической работе их теплоцентралей.Эта автоматизация основана в первую очередь на термостате, устройстве, которое, когда температура в помещении упадет до заданной точки, активирует печь или котел до тех пор, пока потребность в тепле не будет удовлетворена. Автоматические отопительные установки настолько тщательно защищены термостатами, что предвидятся и контролируются почти все мыслимые обстоятельства, которые могут быть опасными.
Проектирование систем парового отопления
Самая простая система парового отопления может быть установлена с относительно низкими затратами.Недостатком простой системы является отсутствие качества регулирования.
Самая простая система парового отопления — это однотрубная паровая система
с главными трубами, проложенными к котлу.
Для пара и конденсата используются одни и те же основные трубы. Конденсат течет в направлении, противоположном направлению пара.
Воздушные клапаны необходимы для удаления воздуха во время запуска.
Система проста, но тепловыделение радиаторов или теплообменников трудно контролировать.Регулировка нагрева приведет к частичному заполнению нагревательных элементов воздухом. Система может правильно работать в приложениях, где тепло может регулироваться непосредственно в котле, например, в складских помещениях, гаражах и т. Д. Следует избегать использования системы там, где требуется индивидуальное регулирование каждого радиатора или теплообменника.
Конденсат сливается обратно в котел, и во время остановок система заполняется воздухом. Это делает конструкцию пригодной для временно нагретого оборудования, работающего в условиях замерзания воды.
Простую систему можно модифицировать до
однотрубной паровой системы с главными паровыми трубами, отведенными от котла
Это лучшая конструкция, чем предыдущая, поскольку пар и конденсат в большей степени разделены в разных трубах. Ее можно дополнительно улучшить с помощью однотрубной паровой системы
с верхним распределением пара
Усовершенствованием этой системы является полное разделение линий пара и конденсата с помощью системы конденсатоотводчика
с системой конденсатоотводчика пар задерживается в нагревательных элементах и паропроводах с помощью конденсатоотводчиков.Конденсатоотводчики могут работать по термодинамическим или механическим принципам.
Преимущество системы — это лучшие индивидуальные модулируемые радиаторы и теплообменники.
Недостаток — больше оборудования и дороже.
Как работает обогреватель в моем автомобиле?
Система обогрева в вашем автомобиле предназначена для сохранения тепла, когда на улице холодно, влажно и / или ветрено. Система охлаждения двигателя автомобиля
напрямую связана с системой отопления.Если ваша система отопления не работает должным образом, важно ее проверить, потому что система охлаждения вашего двигателя также может работать неправильно, а перегретый двигатель может привести к его повреждению.
Система отопления состоит из нескольких основных компонентов; сердечник обогревателя, двигатель нагнетателя / вентилятор, шланги обогревателя, регулирующий клапан обогревателя и панель / узел управления HVAC (обогрев, вентиляция, кондиционирование воздуха) внутри кабины. Компоненты системы охлаждения, которые взаимодействуют с системой отопления, — это охлаждающая жидкость, термостат, радиатор и водяной насос.Сердечник обогревателя также используется в системе охлаждения автомобиля.
Тепло, которое создается при работе двигателя, накапливается, и его нужно куда-то уйти. Большая часть этого тепла проходит через выхлопную систему. Остающееся тепло остается в отливке двигателя, передаваясь охлаждающей жидкости. Как только автомобиль нагревается до рабочей температуры, термостат открывается и позволяет охлаждающей жидкости из системы охлаждения циркулировать по каналам двигателя, удаляя тепло от двигателя, отправляя его в радиатор и циркулируя в сердечнике нагревателя, который распределяет это тепло в кабине автомобиля. транспортное средство.Пассажиры в автомобиле управляют элементами управления обогревателем и вентилятором, чтобы контролировать, сколько тепла и с какой скоростью поступает в салон, с помощью скорости электродвигателя / вентилятора нагнетателя.
Сердечник нагревателя похож на небольшой радиатор, который действует как теплообменник. Обычно он устанавливается под приборной панелью или корпусом HVAC рядом с брандмауэром на стороне пассажира
транспортного средства. Этот компонент имеет вход и выход, позволяющие охлаждающей жидкости проходить через активную зону. Электродвигатель нагнетателя продувает воздух через сердечник обогревателя в салон автомобиля.Клапан управления нагревателем — это устройство, которое регулирует поток горячей охлаждающей жидкости двигателя через сердечник нагревателя. Обычно он расположен в одном из шлангов нагревателя, чтобы регулировать этот поток. Таким образом, этот клапан помогает регулировать мощность обогревателя в кабине, как того требуют органы управления обогревателем, которыми управляют пассажиры салона автомобиля.
Для правильной работы нагревателя решающее значение имеет хорошее рабочее состояние системы охлаждения. Правильное сочетание чистой охлаждающей жидкости и воды, обеспечивающее надлежащий уровень защиты, который в нашем климате составляет -32 градуса по Фаренгейту.Наличие полного уровня охлаждающей жидкости без утечек также очень важно для правильной работы. Термостат должен открываться и закрываться при надлежащих уровнях температуры и не заедать, а водяной насос должен работать, чтобы он мог циркулировать охлаждающую жидкость через двигатель, радиатор и сердечник нагревателя. Сердцевина нагревателя и радиатор должны быть чистыми и герметичными, чтобы тепло от двигателя могло должным образом рассеиваться.
Правильное обслуживание системы охлаждения — ключ к эффективной работе системы обогрева вашего автомобиля.Регулярная промывка охлаждающей жидкости в двигателе и добавление чистой смеси охлаждающая жидкость / вода очень важны наряду с устранением любых утечек, возникающих в вашей системе охлаждения. Мы рекомендуем регулярно проверять вашу систему охлаждения при каждой замене масла, чтобы вы знали о любых проблемах с системой охлаждения и могли отремонтировать их, пока они еще небольшие. Стив и Карен Джонстон — владельцы компании All About Automotive, занимающейся ремонтом автомобилей и техническим обслуживанием автомобилей в историческом центре города Грешем.Если у вас есть вопросы или комментарии, позвоните им по телефону 503-465-2926 или напишите по адресу [адрес электронной почты защищен], вы также можете посетить наш веб-сайт по адресу allaboutautomotive.com.
% PDF-1.4 % 18 0 obj> эндобдж xref 18 825 0000000016 00000 н. 0000018159 00000 п. 0000016796 00000 п. 0000018239 00000 п. 0000018418 00000 п. 0000029574 00000 п. 0000030008 00000 п. 0000030457 00000 п. 0000030615 00000 п. 0000030844 00000 п. 0000031067 00000 п. 0000031306 00000 п. 0000031382 00000 п. 0000033979 00000 п. 0000035727 00000 п. 0000037379 00000 п. 0000039077 00000 п. 0000041217 00000 п. 0000043316 00000 п. 0000043446 00000 п. 0000043594 00000 п. 0000043628 00000 п. 0000043914 00000 п. 0000044135 00000 п. 0000046101 00000 п. 0000050056 00000 п. 0000057127 00000 п. 0000057356 00000 п. 0000057540 00000 п. 0000060209 00000 п. 0000060387 00000 п. 0000060533 00000 п. 0000060669 00000 п. 0000060846 00000 п. 0000060986 00000 п. 0000061119 00000 п. 0000061296 00000 п. 0000061445 00000 п. 0000061588 00000 п. 0000061769 00000 п. 0000061918 00000 п. 0000062095 00000 п. 0000062277 00000 п. 0000062456 00000 п. 0000062599 00000 н. 0000062786 00000 п. 0000062973 00000 п. 0000063113 00000 п. 0000063265 00000 п. 0000063452 00000 п. 0000063604 00000 п. 0000063737 00000 п. 0000063880 00000 п. 0000064070 00000 п. 0000064222 00000 п. 0000064413 00000 п. 0000064549 00000 п. 0000064739 00000 п. 0000064897 00000 п. 0000065037 00000 п. 0000065225 00000 п. 0000065415 00000 п. 0000065577 00000 п. 0000065723 00000 п. 0000065866 00000 п. 0000066031 00000 п. 0000066225 00000 п. 0000066393 00000 п. 0000066585 00000 п. 0000066734 00000 п. 0000066904 00000 п. 0000067096 00000 п. 0000067251 00000 п. 0000067416 00000 п. 0000067588 00000 п. 0000067779 00000 п. 0000067922 00000 п. 0000068094 00000 п. 0000068287 00000 п. 0000068459 00000 п. 0000068595 00000 п. 0000068765 00000 п. 0000068935 00000 п. 0000069129 00000 п. 0000069279 00000 п. 0000069451 00000 п. 0000069643 00000 п. 0000069816 00000 п. 0000069975 00000 п. 0000070149 00000 п. 0000070323 00000 п. 0000070516 00000 п. 0000070689 00000 п. 0000070855 00000 п. 0000071048 00000 п. 0000071219 00000 п. 0000071412 00000 п. 0000071583 00000 п. 0000071754 00000 п. 0000071943 00000 п. 0000072114 00000 п. 0000072289 00000 п. 0000072463 00000 п. 0000072634 00000 п. 0000072768 00000 н. 0000072965 00000 п. 0000073158 00000 п. 0000073299 00000 н. 0000073473 00000 п. 0000073641 00000 п. 0000073812 00000 п. 0000073985 00000 п. 0000074178 00000 п. 0000074319 00000 п. 0000074485 00000 п. 0000074676 00000 п. 0000074850 00000 п. 0000075023 00000 п. 0000075216 00000 п. 0000075384 00000 п. 0000075564 00000 п. 0000075735 00000 п. 0000075908 00000 п. 0000076099 00000 п. 0000076252 00000 п. 0000076431 00000 н. 0000076604 00000 п. 0000076778 00000 п. 0000076978 00000 п. 0000077152 00000 п. 0000077335 00000 п. 0000077508 00000 п. 0000077705 00000 п. 0000077878 00000 н. 0000078060 00000 п. 0000078234 00000 п. 0000078432 00000 п. 0000078605 00000 п. 0000078785 00000 п. 0000078958 00000 п. 0000079154 00000 п. 0000079332 00000 п. 0000079505 00000 п. 0000079679 00000 п. 0000079871 00000 п. 0000080042 00000 п. 0000080222 00000 п. 0000080395 00000 п. 0000080593 00000 п. 0000080737 00000 п. 0000080926 00000 п. 0000081099 00000 п. 0000081272 00000 п. 0000081469 00000 п. 0000081642 00000 п. 0000081825 00000 п. 0000081998 00000 п. 0000082154 00000 п. 0000082356 00000 п. 0000082515 00000 п. 0000082696 00000 п. 0000082876 00000 п. 0000083049 00000 п. 0000083248 00000 н. 0000083425 00000 п. 0000083612 00000 п. 0000083746 00000 п. 0000083919 00000 п. 0000084063 00000 п. 0000084266 00000 п. 0000084429 00000 п. 0000084606 00000 п. 0000084747 00000 п. 0000084888 00000 н. 0000085061 00000 п. 0000085261 00000 п. 0000085417 00000 п. 0000085583 00000 п. 0000085757 00000 п. 0000085933 00000 п. 0000086077 00000 п. 0000086280 00000 п. 0000086460 00000 п. 0000086604 00000 п. 0000086777 00000 п. 0000086982 00000 п. 0000087157 00000 п. 0000087331 00000 п. 0000087504 00000 п. 0000087713 00000 п. 0000087893 00000 п. 0000088066 00000 п. 0000088210 00000 п. 0000088390 00000 н. 0000088600 00000 п. 0000088777 00000 п. 0000088955 00000 п. 0000089136 00000 п. 0000089346 00000 п. 0000089521 00000 п. 0000089696 00000 п. 0000089904 00000 п. 00000 00000 п. 00000
00000 н. 0000000000 п. 0000090616 00000 н. 0000090796 00000 п. 0000091007 00000 п. 0000091187 00000 п. 0000091362 00000 п. 0000091515 00000 п. 0000091705 00000 п. 0000091917 00000 п. 0000092101 00000 п. 0000092279 00000 п. 0000092465 00000 п. 0000092612 00000 п. 0000092824 00000 п. 0000093005 00000 п. 0000093185 00000 п. 0000093369 00000 п. 0000093556 00000 п. 0000093771 00000 п. 0000093946 00000 п. 0000094126 00000 п. 0000094309 00000 п. 0000094520 00000 п. 0000094700 00000 п. 0000094916 00000 п. 0000095097 00000 п. 0000095279 00000 н. 0000095454 00000 п. 0000095634 00000 п. 0000095849 00000 п. 0000096032 00000 п. 0000096210 00000 п. 0000096397 00000 п. 0000096577 00000 п. 0000096789 00000 п. 0000096969 00000 п. 0000097113 00000 п. 0000097302 00000 п. 0000097511 00000 п. 0000097721 00000 п. 0000097895 00000 п. 0000098073 00000 п. 0000098257 00000 п. 0000098436 00000 п. 0000098619 00000 п. 0000098809 00000 п. 0000099021 00000 н. 0000099199 00000 п. 0000099379 00000 н. 0000099591 00000 п. 0000099775 00000 п. 0000099952 00000 н. 0000100133 00000 п. 0000100274 00000 н. 0000100485 00000 н. 0000100675 00000 н. 0000100852 00000 н. 0000101037 00000 п. 0000101226 00000 н. 0000101439 00000 п. 0000101618 00000 н. 0000101805 00000 н. 0000102017 00000 н. 0000102164 00000 п. 0000102358 00000 п. 0000102535 00000 н. 0000102721 00000 н. 0000102936 00000 н. 0000103126 00000 н. 0000103303 00000 п. 0000103492 00000 п. 0000103700 00000 н. 0000103888 00000 н. 0000104065 00000 н. 0000104277 00000 н. 0000104464 00000 н. 0000104646 00000 п. 0000104840 00000 н. 0000105025 00000 н. 0000105237 00000 п. 0000105414 00000 н. 0000105596 00000 н. 0000105807 00000 н. 0000105990 00000 н. 0000106184 00000 п. 0000106397 00000 н. 0000106581 00000 п. 0000106780 00000 н. 0000106991 00000 п. 0000107171 00000 п. 0000107371 00000 п. 0000107550 00000 н. 0000107760 00000 п. 0000107955 00000 п. 0000108132 00000 н. 0000108338 00000 п. 0000108538 00000 п. 0000108718 00000 п. 0000108922 00000 н. 0000109117 00000 н. 0000109294 00000 н. 0000109502 00000 н. 0000109696 00000 п. 0000109909 00000 н. 0000110046 00000 н. 0000110227 00000 п. 0000110420 00000 н. 0000110554 00000 п. 0000110734 00000 п. 0000110946 00000 н. 0000111137 00000 н. 0000111319 00000 н. 0000111469 00000 н. 0000111684 00000 н. 0000111874 00000 н. 0000112090 00000 н. 0000112270 00000 н. 0000112461 00000 н. 0000112679 00000 н. 0000112862 00000 н. 0000113012 00000 н. 0000113203 00000 н. 0000113422 00000 н. 0000113563 00000 н. 0000113752 00000 н. 0000113929 00000 н. 0000114120 00000 н. 0000114335 00000 н. 0000114501 00000 н. 0000114686 00000 н. 0000114863 00000 н. 0000115053 00000 н. 0000115216 00000 н. 0000115428 00000 н. 0000115617 00000 н. 0000115793 00000 н. 0000115983 00000 п. 0000116149 00000 н. 0000116354 00000 п. 0000116542 00000 н. 0000116722 00000 н. 0000116912 00000 н. 0000117081 00000 п. 0000117288 00000 н. 0000117478 00000 н. 0000117658 00000 н. 0000117848 00000 н. 0000117982 00000 п. 0000118194 00000 н. 0000118379 00000 н. 0000118558 00000 н. 0000118748 00000 н. 0000118964 00000 н. 0000119101 00000 п. 0000119245 00000 н. 0000119443 00000 н. 0000119625 00000 н. 0000119795 00000 н. 0000119963 00000 н. 0000120104 00000 н. 0000120317 00000 н. 0000120476 00000 н. 0000120676 00000 н. 0000120858 00000 н. 0000121032 00000 н. 0000121250 00000 н. 0000121418 00000 н. 0000121571 00000 н. 0000121768 00000 н. 0000121950 00000 н. 0000122124 00000 н. 0000122340 00000 н. 0000122522 00000 н. 0000122721 00000 н. 0000122894 00000 н. 0000123096 00000 н. 0000123313 00000 н. 0000123495 00000 н. 0000123669 00000 н. 0000123888 00000 н. 0000124056 00000 н. 0000124261 00000 н. 0000124443 00000 н. 0000124609 00000 н. 0000124822 00000 н. 0000124978 00000 н. 0000125182 00000 н. 0000125364 00000 н. 0000125527 00000 н. 0000125729 00000 н. 0000125934 00000 н. 0000126116 00000 п. 0000126272 00000 н. 0000126476 00000 н. 0000126684 00000 н. 0000126866 00000 н. 0000127019 00000 п. 0000127230 00000 н. 0000127436 00000 н. 0000127618 00000 н. 0000127837 00000 п. 0000128043 00000 н. 0000128225 00000 н. 0000128431 00000 н. 0000128652 00000 н. 0000128834 00000 н. 0000129042 00000 н. 0000129259 00000 н. 0000129441 00000 н. 0000129658 00000 н. 0000129861 00000 н. 0000130042 00000 н. 0000130258 00000 н. 0000130469 00000 н. 0000130650 00000 н. 0000130861 00000 н. 0000131059 00000 н. 0000131237 00000 н. 0000131448 00000 н. 0000131655 00000 н. 0000131835 00000 н. 0000132042 00000 н. 0000132244 00000 н. 0000132422 00000 н. 0000132632 00000 н. 0000132840 00000 н. 0000133019 00000 н. 0000133237 00000 н. 0000133443 00000 н. 0000133616 00000 н. 0000133836 00000 н. 0000134044 00000 н. 0000134217 00000 н. 0000134442 00000 н. 0000134641 00000 н. 0000134814 00000 н. 0000135034 00000 н. 0000135232 00000 н. 0000135406 00000 н. 0000135624 00000 н. 0000135812 00000 н. 0000135985 00000 н. 0000136199 00000 н. 0000136395 00000 н. 0000136568 00000 н. 0000136781 00000 н. 0000136977 00000 н. 0000137150 00000 н. 0000137360 00000 н. 0000137553 00000 н. 0000137716 00000 н. 0000137888 00000 н. 0000138092 00000 н. 0000138280 00000 н. 0000138449 00000 н. 0000138612 00000 н. 0000138823 00000 н. 0000139011 00000 н. 0000139180 00000 н. 0000139327 00000 н. 0000139540 00000 н. 0000139728 00000 н. 0000139899 00000 н. 0000140089 00000 н. 0000140304 00000 н. 0000140474 00000 н. 0000140693 00000 п. 0000140883 00000 н. 0000141053 00000 п. 0000141276 00000 н. 0000141472 00000 н. 0000141666 00000 н. 0000141884 00000 н. 0000142054 00000 н. 0000142273 00000 н. 0000142468 00000 н. 0000142665 00000 н. 0000142881 00000 н. 0000143050 00000 н. 0000143256 00000 н. 0000143453 00000 н. 0000143656 00000 п. 0000143866 00000 н. 0000144066 00000 н. 0000144282 00000 н. 0000144480 00000 н. 0000144697 00000 н. 0000144868 00000 н. 0000145115 00000 н. 0000145357 00000 н. 0000145599 00000 н. 0000145844 00000 н. 0000146015 00000 н. 0000146254 00000 н. 0000146494 00000 н. 0000146660 00000 н. 0000146899 00000 н. 0000147143 00000 н. 0000147383 00000 п. 0000147632 00000 н. 0000147872 00000 н. 0000148038 00000 н. 0000148285 00000 н. 0000148448 00000 н. 0000148696 00000 п. 0000148867 00000 н. 0000149112 00000 н. 0000149354 00000 п. 0000149590 00000 н. 0000149826 00000 н. 0000150064 00000 н. 0000150223 00000 н. 0000150386 00000 н. 0000150626 00000 н. 0000150868 00000 н. 0000151111 00000 н. 0000151355 00000 н. 0000151598 00000 н. 0000151841 00000 н. 0000152080 00000 н. 0000152316 00000 н. 0000152562 00000 н. 0000152805 00000 н. 0000153043 00000 н. 0000153284 00000 н. 0000153521 00000 н. 0000153753 00000 н. 0000153909 00000 н. 0000154079 00000 п. 0000154314 00000 н. 0000154547 00000 н. 0000154706 00000 н. 0000154946 00000 н. 0000155182 00000 н. 0000155335 00000 н. 0000155488 00000 н. 0000155727 00000 н. 0000155883 00000 н. 0000156120 00000 н. 0000156276 00000 н. 0000156511 00000 н. 0000156680 00000 н. 0000156923 00000 н. 0000157076 00000 н. 0000157319 00000 н. 0000157567 00000 н. 0000157804 00000 н. 0000158037 00000 н. 0000158275 00000 н. 0000158506 00000 н. 0000158737 00000 н. 0000158906 00000 н. 0000159136 00000 н. 0000159295 00000 н. 0000159527 00000 н. 0000159686 00000 н. 0000159915 00000 н. 0000160071 00000 н. 0000160297 00000 н. 0000160466 00000 н. 0000160687 00000 н. 0000160866 00000 н. 0000161092 00000 н. 0000161272 00000 н. 0000161496 00000 н. 0000161674 00000 н. 0000161891 00000 н. 0000162071 00000 н. 0000162251 00000 н. 0000162430 00000 н. 0000162648 00000 н. 0000162828 00000 н. 0000163008 00000 н. 0000163188 00000 н. 0000163368 00000 н. 0000163552 00000 н. 0000163734 00000 н. 0000163920 00000 н. 0000164105 00000 н. 0000164290 00000 н. 0000164472 00000 н. 0000164658 00000 н. 0000164839 00000 н. 0000165022 00000 н. 0000165208 00000 н. 0000165394 00000 н. 0000165580 00000 н. 0000165796 00000 н. 0000166010 00000 н. 0000166196 00000 н. 0000166412 00000 н. 0000166598 00000 н. 0000166784 00000 н. 0000166974 00000 н. 0000167194 00000 н. 0000167338 00000 н. 0000167530 00000 н. 0000167747 00000 н. 0000167963 00000 н. 0000168151 00000 н. 0000168366 00000 н. 0000168554 00000 н. 0000168767 00000 н. 0000168945 00000 н. 0000169160 00000 н. 0000169343 00000 п. 0000169527 00000 н. 0000169674 00000 н. 0000169873 00000 н. 0000170087 00000 н. 0000170302 00000 н. 0000170501 00000 п. 0000170716 00000 н. 0000170911 00000 п. 0000171124 00000 н. 0000171315 00000 н. 0000171526 00000 н. 0000171719 00000 н. 0000171928 00000 н. 0000172127 00000 н. 0000172321 00000 н. 0000172471 00000 н. 0000172667 00000 н. 0000172884 00000 н. 0000173099 00000 н. 0000173293 00000 н. 0000173508 00000 н. 0000173702 00000 н. 0000173918 00000 н. 0000174102 00000 н. 0000174316 00000 н. 0000174505 00000 н. 0000174721 00000 н. 0000174909 00000 н. 0000175084 00000 н. 0000175298 00000 н. 0000175476 00000 н. 0000175691 00000 п. 0000175908 00000 н. 0000176123 00000 н. 0000176339 00000 н. 0000176553 00000 н. 0000176730 00000 н. 0000176944 00000 н. 0000177157 00000 н. 0000177338 00000 н. 0000177554 00000 н. 0000177735 00000 н. 0000177947 00000 н. 0000178160 00000 н. 0000178341 00000 п. 0000178522 00000 н. 0000178731 00000 н. 0000178913 00000 н. 0000179123 00000 н. 0000179305 00000 н. 0000179517 00000 н. 0000179702 00000 н. 0000179914 00000 н. 0000180096 00000 н. 0000180307 00000 н. 0000180492 00000 н. 0000180701 00000 п. 0000180886 00000 н. 0000181067 00000 н. 0000181217 00000 н. 0000181399 00000 н. 0000181608 00000 н. 0000181819 00000 н. 0000182003 00000 н. 0000182211 00000 н. 0000182422 00000 н. 0000182629 00000 н. 0000182837 00000 н. 0000183045 00000 н. 0000183254 00000 н. 0000183404 00000 н. 0000183582 00000 н. 0000183741 00000 н. 0000183922 00000 н. 0000184129 00000 н. 0000184292 00000 н. 0000184476 00000 н. 0000184682 00000 н. 0000184848 00000 н. 0000185032 00000 н. 0000185237 00000 н. 0000185406 00000 н. 0000185611 00000 н. 0000185797 00000 н. 0000185966 00000 н. 0000186152 00000 н. 0000186354 00000 н. 0000186520 00000 н. 0000186706 00000 н. 0000186907 00000 н. 0000187073 00000 н. 0000187259 00000 н. 0000187466 00000 н. 0000187632 00000 н. 0000187779 00000 н. 0000187981 00000 н. 0000188167 00000 н. 0000188330 00000 н. 0000188516 00000 н. 0000188719 00000 н. 0000188885 00000 н. 0000189071 00000 н. 0000189276 00000 н. 0000189462 00000 н. 0000189665 00000 н. 0000189849 00000 н. 00001
00000 н. 00001 00000 н. 00001 00000 н. 0000190602 00000 н. 0000190768 00000 н. 0000190924 00000 н. 0000191124 00000 н. 0000191293 00000 н. 0000191443 00000 н. 0000191623 00000 н. 0000191828 00000 н. 0000191997 00000 н. 0000192177 00000 н. 0000192360 00000 н. 0000192561 00000 н. 0000192717 00000 н. 0000192890 00000 н. 0000193069 00000 н. 0000193271 00000 н. 0000193430 00000 н. 0000193599 00000 н. 0000193777 00000 н. 0000193950 00000 н. 0000194119 00000 н. 0000194292 00000 н. 0000194494 00000 н. 0000194663 00000 н. 0000194865 00000 н. 0000195034 00000 н. 0000195203 00000 н. 0000195405 00000 н. 0000195578 00000 н. 0000195747 00000 н. 0000195916 00000 н. 0000196116 00000 н. 0000196314 00000 н. 0000196483 00000 н. 0000196684 00000 н. 0000196886 00000 н. 0000197059 00000 н. 0000197255 00000 н. 0000197428 00000 н. 0000197594 00000 н. 0000197767 00000 н. 0000197933 00000 п. 0000198134 00000 н. 0000198307 00000 н. 0000198516 00000 н. 0000198689 00000 н. 0000198855 00000 н. 0000199065 00000 н. 0000199238 00000 п. 0000199451 00000 н. 0000199614 00000 н. 0000199786 00000 н. 0000199952 00000 н. 0000200158 00000 н. 0000200331 00000 п. 0000200500 00000 н. 0000200707 00000 н. 0000200879 00000 н. 0000201086 00000 н. 0000201252 00000 н. 0000201423 00000 н. 0000201592 00000 н. 0000201801 00000 н. 0000201972 00000 н. 0000202138 00000 н. 0000202347 00000 н.