Какое максимальное количество секций алюминиевого радиатора допустимо: Максимальное количество секций в алюминиевом радиаторе
Расчет количества секций алюминиевого радиатора
Пример расчета секций алюминиевых радиаторов отоплениия на квадратный метр
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия. которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
- Немалую важность играет параметр тепловой мощности одного ребра радиатора.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Узнайте полезную информацию об алюминиевых батареях на нашем сайте:
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +35 = 1.5;
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
- неотапливаемого чердака – коэффициент 1.0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 2.5 м = 1.0;
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Если вы решили установить алюминиевые радиаторы отопления важно знать следующее:
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Полезное видео
Расчет количества секций алюминиевых радиаторов отопления
Расчет мощности алюминиевой батареи можно проводить по-разному. Практически каждый из способов может дать ответ на вопрос, сколько секций нужно установить 1 кв. м. В принципе, ответ на этот вопрос ищут новички, ведь на самом деле, чтобы получить нужную цифру, нужно полностью использовать любой из методов. Потом из результата надо узнавать, сколько секций должно быть на 1 кв. м. Итоговые цифры уже позволяют определить нужное для комнаты количество ребер алюминиевого радиатора отопления, и поэтому расчет числа секций на 1 кв. м становится не совсем целесообразным. Но все-таки есть один простой способ.
Самый простой способ определения числа секций на 1 кв. м
Существует метод расчета алюминиевого радиатора по площади. Он исходит из того, что для обогрева 1 м2 помещения до комфортной температуры (ею является +20 °С) радиатор должен выделять 100 Вт тепла. Эту цифру нужно и использовать.
- Определить тепловую мощность одного ребра радиатора отопления. Часто она равняется 180 Вт.
- Рассчитать или измерить температуру теплоносителя в системе отопления. Если температура воды, входящей в батарею, составляет tвх. = 100 °С и, выходящей из нее, составляет tвых. = 80 °С, то цифру 100 делят на 180. Результат составляет 0,55. Именно 0,55 секции нужно использовать для 1 кв. м.
- Если измеренные показатели ниже, то делают расчет показателя ΔT (в вышеуказанном случае он составляет 70 °С). Для этого используют формулу ΔT = (tвх. + tвых.)/2 — tк, где tк является желаемой температурой комнаты. Стандартно tк составляет 20 °С. Пусть tвх. = 60 °С, а tвых. = 40 °С, тогда ΔT = (60 + 40)/2 — 20 = 30 °С.
- Найти специальную табличку, в которой определенному значению ΔT соответствует корректирующий коэффициент. Эти таблички нужно спрашивать у производителей. Для некоторых радиаторов отопления при ΔT = 30 °С этот коэффициент составляет 0,4.
- Умножить тепловую мощность одного ребра на 0,4. 180 * 0,4 = 72 Вт. Именно столько тепла может передать одна секция от теплоносителя, нагретого до 60 °С.
- Разделить норму на 72. Итого 100/72 = 1,389 секции нужно, чтобы отопить 1 м2.
Далее, этот показатель можно перемножить на площадь. Если помещение имеет 20 кв. м, то нужно установить батарею с 28 ребрами. Понятно, что лучше разбить ее пополам.
Этот метод имеет такие недостатки:
- Норма 100 Вт рассчитана для помещений, высота которых меньше 3 м. Если комната выше, то нужно использовать корректирующий коэффициент.
- Не учитываются потери тепла через окна, дверь, а также стены. если помещение является угловым.
- Не учитывается потеря тепла, вызванная определенным способом установки батареи.
Правильный расчет
Он предусматривает умножение площади комнаты на норму 100. корректировку результата в зависимости от особенностей помещения и деление конечной цифры на мощность одной секции (желательно использовать скорректированную мощность).
Корректируют произведение площади и нормы, равной 100 Вт, таким образом:
- На каждое окно к нему добавляют 0,2 кВт.
- На каждую дверь к нему добавляют 0,1 кВт.
- Для углового помещения конечную цифру умножают на 1,3. Если угловая комната расположена в частном доме, то коэффициент составляет 1,5.
- Для помещения с высотой, большей 3 м, применяют коэффициенты 1,05 (высота 3 м), 1,1 (высота 3,5 м), 1,15 (высота 4 м), 1,2 (высота 4,5 м).
Нужно учесть и способ размещения батареи, который также приводит к потере тепла. Эти потери являются такими:
- 3-4% — в случае монтажа отопительного устройства под широким подоконником или полочкой;
- 7%. если радиатор отопления устанавливается в нише;
- 5-7%. если находится возле открытой стены, однако частично его закрывает экран;
- 20-25% — в случае полного закрытия экраном.
Пример расчета количества секций
Планируется поставить батарею в помещении с площадью 20 кв. м. Комната является угловой, имеет два окна и одну дверь. Высота стандартная, то есть равна 2,7 м. Радиатор отопления будет размещаться под подоконником (корректирующий коэффициент — 1,04). Котел подает теплоноситель с температурой 60 °С. На выходе из радиатора вода будет иметь температуру, равную 40 °С.
Расчет максимального количества ребер таков:
Q = (20 * 100 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 37,56 секций.
Поскольку нужно округлять в максимальную сторону, то нужно устанавливать батарею с 38 ребрами. Ее можно разделить на две части и поставить под обоими окнами. Каждая из них будет иметь 19 ребер.
Метод учитывающий высоту
От вышеописанного способа он отличается тем, что предусматривает норму тепла на 1 куб. м. а также использует не площадь помещения, а объем. Нормой в этом случае является 41 Вт. Все другие корректировки являются такими же.
Если взять вышерассмотренный пример, то количество секций радиатора будет таким:
Q = (20 * 2,7 * 41 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 41,57. то есть 42. Конечно, этот показатель можно считать максимальным.
Похожие статьи:
Расчет количества секций биметаллического радиатора Мощность и количество секций алюминиевых радиаторов Как рассчитать количество секций для радиатора отопления Подключение алюминиевых радиаторов
Главная » Отопление » Как рассчитать количество секций радиатора
Как рассчитать количество секций радиатора
При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.
В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления
Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).
Расчет по площади
Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:
- для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
- для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.
Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.
Как рассчитать количество секций радиатора: формула
Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловое помещение 16 м 2. в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.
Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.
Теперь считаем количество: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.
Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.
Считаем батареи по объему
Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:
- для кирпичных на 1 м 3 требуется 34 Вт тепла;
- для панельных — 41 Вт
Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).
Формула расчета количества секций по объему
Пример расчета по объему
Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:
- Находим объем. 16 м 2 * 3 м = 48 м 3
- Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
- Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.
Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500). Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средине значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :
- биметаллическая секция обогреет 1,8 м 2 ;
- алюминиевая — 1,9-2,0 м 2 ;
- чугунная — 1,4-1,5 м 2 ;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2. для ее отопления примерно понадобится:
- биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м 2 / 2 м 2 = 8 шт.
- чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе 60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.
Источники: http://netholodu.com/elementy-otopleniya/radiatory/alyuminievye/raschet-sektsij.html, http://poluchi-teplo.ru/radiatoryi/alyum/raschet-kolichestva-sektsiy-alyuminievyih-radiatorov-otopleniya.html, http://stroychik.ru/otoplenie/raschet-sekcij-radiatorov
Мощность одной секции алюминиевого радиатора
Как рассчитать мощность одной секции алюминиевого радиатора в отопительной системе
Малоизвестные Altera R
Можно сколько угодно говорить о том, что сердцем системы отопления является котел, но тепло в обогреваемом помещении обеспечивается благодаря радиаторам. От того, правильно ли рассчитано их количество, будет напрямую зависеть уют в доме. Чтобы грамотно сделать расчет, за основу берутся показатели мощности одной секции алюминиевого радиатора.
Почему алюминиевого? В первую очередь потому, что они значительно превосходят по своим показателям традиционные чугунные батареи, и именно их все чаще применяют при создании современных отопительных сетей.
Разновидности алюминиевых батарей
Обратите внимание! Алюминиевые радиаторы производятся двумя методами — литья и экструзии. При использовании метода литья каждая секция изготавливается отдельно.
Сырьем является силумин — алюминий с кремниевыми добавками, не превышающими 12%. Литьем получают разнообразные по форме секции, способные выдерживать давление до 16 атмосфер.
Методом экструзии изготавливаются не радиаторы, а их отдельные части, затем скрепляемые между собой. Этот метод позволяет удешевить производство, но по техническим характеристикам батареи, созданные экструзионным способом, уступают литым. Есть у них и еще один недостаток — изменить количество секций в радиаторе невозможно.
Нельзя не отметить еще один вид алюминиевых батарей — анодированного типа. Они самые дорогостоящие и, безусловно, высококачественные. Сырьем для их производства служит очищенный алюминий. Готовое изделие анодируется, благодаря чему становится абсолютно не подверженным коррозии. Отдельные детали в таких радиаторах соединяются муфтами.
Поэтому внутри они абсолютно гладкие, а значит, им не страшно обрастание накипью. Их рабочее давление — до 70 атмосфер.
Важные параметры
Устройство RoyalThermo Evolution
- Расстояние между осями может быть стандартным — 200, 350, 500 мм — или нестандартным. Самый распространенный вариант — 500 мм.
- Высота также может быть различной. Прежде чем покупать батареи, стоит измерить расстояние под подоконником. Сверху и снизу от батареи должно быть около 10 см свободного пространства. От стены до радиатора — около 3 см. Все секции должны хорошо вмещаться в отведенное для радиатора место.
- Давление. Этот показатель включает в себя рабочее и опрессовочное давление. Иногда может быть указано еще и максимальное. Стандартные показатели рабочего давления для алюминиевых радиаторов — 10–15 атмосфер. Для автономного отопления это достаточные параметры, а для квартир с центральным отоплением лучше подобрать модель с более высокими показателями — до 30 атмосфер. Опрессовочное давление должны быть не менее 30 атмосфер. Лучше покупать батареи с запасом. Это поможет в случае неисправности или неожиданного увеличения давления в системе.
- Теплопередача. Этот показатель указывается в отношении одной секции. В среднем теплоотдача секции составляет 100–150 Вт. Радиаторы с высокой теплоотдачей энергоэффективнее. Именно по этой причине алюминиевые модели стали быстро лидировать на рынке.
Преимущества и недостатки
От чугунных алюминиевые батареи отличаются целым рядом показателей:
- Высокая теплоотдача, а значит, меньший износ котла и возможность снизить затраты на отопление.
- Легко монтируются и вписываются в любой интерьер.
- Хорошо подходят для автономных систем отопления, а также могут устанавливаться в многоквартирных домах.
- Могут монтироваться как в систему со старыми чугунными трубами, так и в современные пластиковые и металлопластиковые сети.
Нет ни одного отопительного прибора, ни одного элемента инженерных сетей, который был бы идеальным и полностью лишенным недостатков. Радиаторы из алюминия — не исключение из этого правила.
Среди важных недостатков стоит отметить:
- Высокий риск образования протечек в местах стыков секций.
- Неравномерное распределение тепла.
- Незначительную конвекционную теплоотдачу.
- Непродолжительный срок службы по сравнению с чугунными батареями.
- Высокую подверженность коррозии за исключением анодированных батарей.
- Чувствительность к нестабильности давления в системе.
Эти недостатки можно считать неважными в автономных системах отопления, но при замене радиаторов в доме, подключенном к центральной магистрали, нужно быть осторожным. В таких случаях лучше выбирать анодированные модели, не глядя на их высокую стоимость.
Как рассчитать мощность радиатора
Зависимость от числа труб
Какими бы качественными ни были батареи, они не смогут обеспечить необходимую теплоотдачу, если изначально расчет мощности и количества секций был выполнен неверно. Основой расчетов является мощность одной секции. Она указывается производителем в спецификации к товару. Но необходимо учитывать, что средние показатели могут существенно отличаться от реальных.
Для расчета теплоотдачи применяется параметр ∆t, представляющий собой разность между температурой воздуха в обогреваемом помещении и температурой в системе. На практике этот показатель редко превышает ∆t 50°C. В то же время производителями он декларируется как ∆t 70 °C, представляющий собой идеальные условия.
При расчете необходимо учитывать и иные данные:
- Расположение помещения в доме.
- Состояние строительных конструкций.
- Размеры и расположение окон и дверей.
- Материалы, из которых построен дом.
- Используемый вид котельного оборудования и т. п.
Простейший расчет можно сделать по формуле — площадь комнаты, умноженная на 100 и разделенная на мощность одной секции. Например, для эффективного обогрева помещения площадью 25 кв. м необходимо 16 секций. Эта цифра получается из простого расчета — 25×100/150.
Заключение
Мощность каждой секции радиатора из алюминия всегда указывается производителем в спецификации к модели. Делая расчет количества батарей, лучше брать не декларируемые цифры, а усредненные показатели. Кроме того, необходимо учитывать и другие факторы, влияющие на энергоэффективность системы, а также тепло в доме.
Мощность одной секции алюминиевого радиатора
Для таких батарей характерны 2 вида конструкции: литая и экструзионная. Первая выполняется в виде отдельных секций, а вторая – в форме склеенных или скрученных болтами 3 частей. Кроме того, сам алюминий, используемый для изготовления, может быть первичным, т.е. чистым сырьем, либо вторичным, который производят из лома или грязных сплавов. Цена последних гораздо ниже. При выборе любой модели важны ее рабочие характеристики, к которым относятся:
- Рабочее давление – величина воздействия воды, которое может выдержать отопительный прибор, сохраняя при этом изначальное состояние. Современные устройства имеют этот показатель от 6 до 16 атмосфер. Приборы с низким рабочим давлением используются в частных домах или квартирах, дачах и коттеджах, где теплоноситель контролируется пользователем. В коммунальных отопительных системах нужны изделия понадежнее, которые выдержат скачки давления.
- Теплоотдача. Отопительные устройства из алюминия имеют преимущество перед чугунными, ведь обладают высокой теплопроводностью, что приводит к выделению максимального размера энергии в помещение. Теплоотдача зависит от мощности одной секции алюминиевого радиатора и изменяется в пределах от 140 до 200 Ватт.
Как рассчитать секции батарей отопления
Даже самые качественные отопительные устройства из алюминия не смогут обогреть жилье, если их теплоотдача будет недостаточной для нагрева определенной площади. Прежде, чем определить количество изделий, нужно вычислить, сколько секционных элементов будет иметь каждое. По правилам считается, что для обогрева 1 кв. м требуется 100 Вт теплоты – такой принимается необходимая мощность радиатора на квадратный метр. Получается, что ведется расчет по площади в несколько этапов:
- Первым делом нужно 100 разделить на мощность одной секции алюминиевого радиатора. Если принять последнюю величину равной 180 Вт, то получится 100/180 = 0,556.
- Для дальнейших вычислений потребуется площадь комнаты, на которую необходимо умножить характеристику, полученную в предыдущем пункте, т.е. на количество секций радиатора на квадратный метр. Примем площадь комнаты равной 18 кв. м и получим – 0,556*18 = 10. Если число не целое, то его округляют в большую сторону, чтобы был запас тепловой энергии.
Такой тепловой расчет помещения является упрощенным. Для более точного вычисления размеров прибора учитывают ориентацию стен и окон по сторонам света, теплопотери на инфильтрацию воздуха через щели и вентиляцию и еще несколько критериев. Существует также расчет по объему:
- Используется условие, что на обогрев 1 куб. м требуется 41 Вт в панельном доме и 34 Вт в кирпичном.
- Полученную площадь умножают на его высоту. Получается – 16*2,7 = 43,2 куб. м, где 16 кв. м – квадратура комнаты, а 2,7 – стандартное значение высоты потолков, взятое для примера.
- Далее для кирпичного дома потребуется – 43,2*41/180 = 9,84, т.е. 10 шт. а для панельного – 43,2*34/180 = 8,16, т.е. 9 шт.
Расчет батарей отопления на комнату
Определять число изделий можно только после вычисления необходимого числа секционных элементов. Далее вам нужно решить, сколько устройств вы будете устанавливать. У нас в примере получилось, что в одной должно быть 10 секционных частей. Это может быть целое изделие, установленное под окном. Для углового помещения лучше разделить это число пополам или на 4 и 6 частей и смонтировать по устройству у каждой наружной стены. Другой вариант – это вычислить значение теплоты, которое требуется для обогрева помещения:
- Для нашего примера оно составляет – 100*16 = 1600 Вт или 1,6 кВт.
- Далее выбрать конкретный товар и определить его теплоотдачу, умножив одноименную характеристику одного элемента на их число. Например, возьмем 6-секционную модель с показателем 180 Вт для одной ее части – 6*180 = 1080 Вт.
- Разделить необходимое значение теплоты на мощность всего прибора – 1600/1080 = 1,48. Округляем это значение в большую сторону. В итоге проведенных вычислений получаем количество, равное 2.
Видео о расчете количества секций радиатора
Мощность алюминиевых радиаторов отопления
Выбирая радиатор отопления, в первую очередь обращают внимание на материал, из которого он изготовлен и на его мощность. От этих факторов зависят эксплуатационные и технические характеристики батареи. Другим немаловажным при выборе критерием является стоимость оборудования. Разберемся с показателями лидеров среди батарей отопления.
Мощность алюминиевых радиаторов отопления и другие их параметры
Мощность алюминиевых радиаторов отопления больше, чем у стальных или чугунных аналогов. благодаря высокой теплоотдаче этого металла. Кроме производительности, радиаторы из алюминия обладают рядом других достоинств, ввиду которых завоевывают все большую популярность среди аналогичного оборудования.
- Легкость – масса радиатора упрощает транспортировку и монтажные работы.
- Привлекательный вид – легко впишутся в окружающую обстановку.
- Долговечность – срок службы до 25 лет.
Мощность одной секции алюминиевого радиатора составляет 0,2 кВт, что является солидным показателем. Для отопления среднего помещения площадью до 15 м. достаточно 7 секций при стандартной высоте или 8, если потолки выше обычного. Если чугунные и стальные радиаторы алюминиевый превосходит, то есть современная разновидность, с которой они имеют практически равные данные.
Показатели биметаллических радиаторов отопления
Мощность биметаллических радиаторов отопления сопоставима с мощностью батареи из алюминия и составляет 0,2 кВт. Это объясняется их составом: алюминиевый корпус обеспечивает мгновенный вывод тепла от стальной начинки. Соединение двух металлов позволило получить батареи, имеющие достоинства алюминия, но без его недостатков.
- Прочность – сталь более устойчива к гидроударам и выдерживает даже сильные перепады до 24 атмосфер.
- Износостойкость – батареи изнутри покрываются специальным защитным составом и становятся невосприимчивы к коррозии.
- Долговечность – срок службы биметалла до 30 лет, что превышает запас прочности алюминиевой батареи.
Учитывая идентичную мощность, количество секций алюминиевого радиатора и биметаллического, для отопления помещения одинаковой площадью, будет равным.
Сравнение биметаллических и алюминиевых радиаторов отопления
Мощность секции алюминиевого радиатора и биметаллического идентична. что наделяет их одинаковой производительностью, но имеются некоторые отличия характеристик. на которые стоит обратить внимание при выборе батарей.
- Надежность – для автономной системы отопления, в которой отсутствует угроза гидроудара, достаточно будет и алюминиевого оборудования, если же предполагается применение в централизованной отопительной системе, лучше подстраховаться и выбрать биметалл, как более стойкий. Он гарантированно выдержит даже серьезный скачок и не протечет.
- Стоимость – один из важнейших критериев, который часто перевешивает любые доводы. Стоимость алюминиевых радиаторов в среднем в два раза ниже, чем стоимость биметаллических, с равными характеристиками. Если сравнивать соотношение цена – качество, выигрывает алюминий, но при условии контроля давления в системе.
Как биметаллические, так и алюминиевые радиаторы будут соответствовать своим характеристикам, только если выпущены на современном оборудовании и согласно технологии. Не стоит пытаться сэкономить и приобрести на удивление дешевую модель, от малоизвестного производителя. Вероятно, ее качество, независимо от материала, оставляет желать лучшего.
Рейтинг: 0 Голосов: 0
Для обеспечения оптимальных показателей отопительной системы проводится расчет количества секций радиатора на отапливаемую площадь. Довольно часто выясняется, что стандартного радиатора недостаточно и секции необходимо добавить, иначе, отопление не будет эффективным. Рассмотрим, как правильно сое.
Чтобы получить максимально эффективную отопительную систему с высоким КПД и минимальными энергозатратами, необходимо не только подобрать наиболее подходящие радиаторы, но и выполнить правильный монтаж. Учитывая возросшую популярность биметаллических батарей, рассмотрим подробнее их подключение. П.
В данной статье мы рассмотрим что лучше радиатор или конвектор для надежного и экономного варианта обогрева как Вашей квартиры так и частного дома, мы приведем несколько надежных и проверенных производителей которым можно доверить отопление своего дома. Вопрос надежного отопления встает перед мно.
Термоклапан для радиатора отопления это очень нужное дополнение, без которого ваша отопительная система будет работать не полноценно. Точнее сказать, работать то она будет, но регулировать температуру системы и, соответственно, температурный режим в комнате, вам будет невозможно. Для того, что бы.
Источники: http://gidotopleniya.ru/radiatory-otopleniya/moshhnost-odnoj-sekcii-aljuminievogo-radiatora-raschet-6618, http://otopleniedoma.su/5-moshchnost-odnoi-sektsii-alyuminievogo-radiatora.html, http://otoplenie-vdome.ru/radiatory-otopleniya/moshchnost-alyuminievyh-radiatorov-otopleniya.html
Алюминий — лёгкий материал, который широко применяется.
Кроме прочего, из него делают батареи отопления.
В их создании очень важен расчёт характеристик.
Google+
Vkontakte
Odnoklassniki
Влияние размера алюминиевого радиатора отопления
Батареи из алюминия делают в широком диапазоне габаритов. Длина оказывает первоочередное влияние на мощность.
Соответственно, для достижения необходимого обогрева нужно увеличить количество секций. Общая протяжённость батареи зависит от расчётов.
Глубина и высота также изменяют показатели, поскольку затрагивают объём. В отличие от длины, эти два значения — вариативные, благодаря чему существует множество различных моделей.
Следующий показатель — межосевое расстояние. Оно отвечает за скорость прогрева радиаторов, поскольку означает промежуток между трубами подачи и обратки.
На работоспособность также влияет способ изготовления:
- Отлив из металла повышает прочность и долговечность прибора. В этом случае каждая секция — цельная единица, из которых собирают устройство. Это делают в определённой последовательности: сначала сваривают верхние части, затем нижние.
- Экструзионный способ предусматривает продавливание нагретого алюминия через решетчатую пластину из металла. Благодаря этому получается профиль заданной формы, который разделяют на части и собирают в радиатор.
Внимание! Подобные отопительные приборы редко встречаются, а изготавливаются, обы
Для выбора отопительного прибора нужно сформулировать основные параметры, как технические, так и эстетические. Для интерьера роль играет вид радиаторов, так как они располагаются на заметном месте под окнами.
Технически все радиаторы выполняют свою основную функцию — передают тепло от теплоносителя в помещение. Выбор сводится к определению теплопотерь в помещении и подбор радиатора по необходимой теплоотдачи. Округленно теплопотери составляют 100 вт на кв.м. Далее необходимо определить какое рабочее давление и какова температура воды в отопительных приборах и трубах.
Затем переходить непосредственно к видам радиаторов.
Чугунные. Современные модели выглядят гораздо лучше, чем всем знакомые советские. Недорогие радиаторы с плоской поверхностью имеют компактные размеры и аккуратный вид. Они долго хранят тепло и не страдают от коррозии. Срок эксплуатации таких приборов — до 50 лет, рабочее давление 10 — 15 атмосфер. Теплоотдача одной секции – 100-150 ватт. Из минусов — их вес, сложность монтажа и большой объем теплоносителя.
Стильным дизайном отличаются алюминиевые радиаторы. Также они имеют небольшой вес и хорошую эффективность — часть тепла отдают за счет излучения, часть за счет конвекции. У таких радиаторов высокое рабочее давление — 10-16 атмосфер. Теплоотдача одной секции – 80-210 ватт. Из минусов — подверженность химической коррозии. Часто для уменьшения теплопотерь в системы добавляют химический реагент, который и способствует коррозии алюминия, что приводит к уменьшению срока службы радиатора.
Биметаллические радиаторы. Состоят из стальной трубы, покрытой алюминием. Благодаря сочетанию двух металлов у радиаторов хорошая стойкость к давлению и качеству воды. Имеют срок службы до 25 лет. Устойчивы к возможному использованию химических реагентов и к гидроударам, имеют высокое рабочее давление — от 20 атмосфер. Теплоотдача одной секции – 150-180 ватт. Из минусов — цена данных отопительных приборов довольно высока. Они дороже алюминиевых на 20%.
Стальные радиаторы. Имеют небольшой вес и хорошо отдают тепло. Бывают панельные и трубчатые. Общая теплоотдача — 1200-1500 ватт. Нагревают помещение быстро и имеют большое разнообразие моделей. У стальных радиаторов наибольшая площадь теплового излучения. Но они обладают большой уязвимостью при гидравлических ударах и попадании кислорода.
При выборе радиатора обратите внимание на то, что его ширина не может быть меньше половины ширине оконного проёма. Расстояние от пола — 6 см, от подоконника — 10 см. Лучше взять отопительный прибор большей мощностью, чем нужно, так как в случае необходимости можно уменьшить обогрев, а вот радиатор с меньшей мощностью “разогнать” не получится.
Количество секций радиатора на 1 м2
Расчет количества секций радиаторов отопления – для чего это нужно знать
На первый взгляд рассчитать, сколько секций радиатора установить в том или ином помещении – просто. Чем больше комната – тем из большего количества секций должен состоять радиатор. Но на практике то, насколько тепло будет в том или ином помещении зависит от более чем десятка факторов. Учитывая их, рассчитать нужное количество тепла от радиаторов, можно намного точнее.
Общие сведения
Теплоотдача одной секции радиатора указана в технических характеристиках изделий от любого производителя. Количество радиаторов в помещении обычно соответствует количеству окон. Под окнами чаще всего и располагаются радиаторы. Их габариты зависят от площади свободной стены между окном и полом. Нужно учитывать, что от подоконника радиатор должен быть опущен не менее, чем на 10 см. А между полом и нижней линией радиатора расстояние должно быть не меньше 6 см. Эти параметры определяют высоту прибора.
Теплоотдача одной секции чугунного радиатора – 140 ватт, более современных металлических – от 170 и выше.
Можно производить расчет количества секций радиаторов отопления, выходя из площади помещения или же его объема.
По нормам считается, что на обогрев одного квадратного метра помещения нужно 100 ватт тепловой энергии. Если же исходить из объема, то тогда количество тепла на 1 кубический метр будет составлять не менее 41 ватта.
Но ни один из этих способов не будет точным если не учитывать особенностей того или иного помещения, количества и размер окон, материал стен, и многое другое. Поэтому рассчитывая секции радиатора по стандартной формуле, будем добавлять коэффициенты, созданные тем или иным условием.
Площадь помещения – расчет количества секций радиаторов отопления
Такой расчет обычно применяется к помещениям, расположенным в стандартных панельных жилых домах с высотой потолка до 2,6 метра.
Площадь комнаты множится на 100 (количество тепла для 1м2) и делится на указанную производителем теплоотдачу одной секции радиатора. Например: площадь комнаты 22 м2, теплоотдача одной секции радиатора – 170 ватт.
Для этой комнаты нужно 13 секций радиатора.
Если же одна секция радиатора будет иметь 190 ватт теплоотдачи, то получим 22Х100/180=11,57. то есть можно ограничиться 12 секциями.
К расчетам нужно добавить 20% если комната имеет балкон или находится в торце дома. Батарея, установленная в нише, еще на 15% снизит теплоотдачу. Но в кухне будет на 10-15% теплее.
Производим расчеты по объему помещения
Для панельного дома со стандартной высотой потолков, как уже указывалось выше, расчет тепла производится из потребности 41 ватт на 1м3. Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то нужно уже 34 ватт на 1м3.
Формула расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной секции радиатора, указанного в паспорте производителя.
Площадь комнаты 18 м2, высота потолка 2, 6 м. Дом – типичная панельная постройка. Теплоотдача одной секции радиатора – 170 ватт.
18Х2,6Х41/170=11,2. Итак, нам нужно 11 секций радиатора. Это при условии, что комната не угловая и в ней нет балкона, в противном случае лучше установить 12 секций.
Посчитаем максимально точно
А вот формула, по которой максимально точно можно сделать расчет количества секций радиатора:
Площадь помещения умноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на теплоотдачу одной секции радиатора.
Подробнее об этих коэффициентах:
q1 – тип остекления: при тройном стеклопакете коэффициент будет 0,85, при двойном стеклопакете — 1 и при обычном остеклении – 1,27.
- современная теплоизоляция – 0,85;
- кладка в 2 кирпича с утеплителем – 1;
- неутепленные стены — 1,27.
q3 – соотношение площадей окон и пола:
q4 — минимальная наружная температура:
q6 – тип помещения, которое находится выше расчетного:
- обогреваемое — 0,8;
- чердачное обогреваемое — 0,9;
- чердачное необогреваемое – 1.
Если будут учтены все вышеперечисленные коэффициенты, посчитать количество секций радиатора в помещении можно будет максимально точно.
Площадь радиатора отопления
Статья содержит в себе практические рекомендации по расчету площади радиатора. В ней приводятся основные методы оптимального расчета площади. А также имеется информация об основных видах радиаторов системы отопления.
07.07.2013 в 20:07
Водяное отопление: закрытая и открытая системы с принудительной и естественной циркуляцией
Какие бывают схемы водяного отопления. Расчет системы и необходимое оборудование. Монтаж труб и приборов. Первый запуск отопительной системы, на что необходимо обратить внимание.
28.02.2013 в 20:02
Расчёт водяного отопления
В данной статье, мы попытались рассказать какие параметры необходимо учитывать при расчете водяного отопления. Используя нашу статью, вы сможете самостоятельно подобрать необходимые составные части для установки отопления в своем доме.
07.07.2013 в 23:07
Чтобы правильно установить радиатор, нужно понимать, что к этому делу в разных условиях требуется разный подход. Монтаж батареи, производимый в частном доме будет существенно отличаться от того, что в квартире. Отличие здесь в способах подключения к теплоносителю.
27.06.2013 в 17:06
Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры
Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Поэтому при замене старой отопительной системы или монтаже новой необходимо знать как рассчитать радиаторы отопления. Для стандартных помещений можно воспользоваться самыми простыми расчетами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.
Расчет по площади помещения
Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.
Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.
Правильный расчет радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме
Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:
2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.
Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.
А чтобы вам было удобнее считать, мы сделали для вас этот калькулятор:
Расчеты в зависимости от объема помещения
Более точные данные можно получить, если сделать расчет секций радиаторов отопления с учетом высоты потолка, т. е. по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.
Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%
Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.
Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв.м. с потолком высотой 3 метра. Объем помещения составит 60 куб.м (20 кв.м. Х 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 куб.м. Х 41 Вт).
А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.
Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.
Что делать если нужен очень точный расчет?
К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.
При расчете количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т.п.
Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:
КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где
КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв.м.;
К1 — коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным двойным остеклением — 1,27;
- для окон с двойным стеклопакетом — 1,0;
- для окон с тройным стеклопакетом — 0,85.
К2 — коэффициент теплоизоляции стен:
- низкая степень теплоизоляции — 1,27;
- хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
- высокая степень теплоизоляции — 0,85.
К3 — соотношение площади окон и пола в помещении:
К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:
- для -35 градусов — 1,5;
- для -25 градусов — 1,3;
- для -20 градусов — 1,1;
- для -15 градусов — 0,9;
- для -10 градусов — 0,7.
К5 — корректирует потребность в тепле с учетом количества наружных стен:
К6 — учет типа помещения, которое расположено выше:
- холодный чердак — 1,0;
- отапливаемый чердак — 0,9;
- отапливаемое жилое помещение — 0,8
К7 — коэффициент, учитывающий высоту потолков:
Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.
Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.
Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.
Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.
Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока «ГРАС», это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?
Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?
Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.
Главная » Отопление » Как рассчитать количество секций радиатора
Как рассчитать количество секций радиатора
При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.
В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления
Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).
Расчет по площади
Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:
- для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
- для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.
Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.
Как рассчитать количество секций радиатора: формула
Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловое помещение 16 м 2. в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.
Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.
Теперь считаем количество: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.
Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.
Считаем батареи по объему
Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:
- для кирпичных на 1 м 3 требуется 34 Вт тепла;
- для панельных — 41 Вт
Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).
Формула расчета количества секций по объему
Пример расчета по объему
Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:
- Находим объем. 16 м 2 * 3 м = 48 м 3
- Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
- Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.
Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500). Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средине значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :
- биметаллическая секция обогреет 1,8 м 2 ;
- алюминиевая — 1,9-2,0 м 2 ;
- чугунная — 1,4-1,5 м 2 ;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2. для ее отопления примерно понадобится:
- биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м 2 / 2 м 2 = 8 шт.
- чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе 60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.
Источники: http://semidelov.ru/mar/raschet-kolichestva-sektsij-radiatorov-otopleniya-dlya-chego-eto-/, http://aqua-rmnt.com/otoplenie/raschety/raschet-radiatorov-otopleniya.html, http://stroychik.ru/otoplenie/raschet-sekcij-radiatorov
Наука
- Анатомия и физиология
- астрономия
- астрофизика
- Биология
- Химия
- наука о планете Земля
- Наука об окружающей среде
- Органическая химия
- физика
2.2: атомные орбитали и квантовые числа
Понимание квантовой теории электронов в атомах
Видео \ (\ PageIndex {1} \) : Предварительный просмотр электронов на орбиталях.
Цель этого раздела — понять орбитали электронов (расположение электронов в атомах), их различные энергии и другие свойства. Использование квантовой теории обеспечивает лучшее понимание этих тем. Это знание является предшественником химической связи.
Как было описано ранее, электроны в атомах могут существовать только на дискретных уровнях энергии, но не между ними. Говорят, что энергия электрона в атоме квантуется, то есть она может быть равна только определенным конкретным значениям и может прыгать с одного энергетического уровня на другой, но не может плавно переходить или оставаться между этими уровнями.
Уровни энергии обозначены значением n , где n = 1, 2, 3,…. Вообще говоря, энергия электрона в атоме больше при больших значениях n .Это число, или , называется главным квантовым числом. Главное квантовое число определяет местоположение энергетического уровня. По сути, это та же концепция, что и n в описании атома Бора. Другое название для основного квантового числа — номер оболочки. Оболочки атома можно представить как концентрические круги, исходящие из ядра. Электроны, которые принадлежат определенной оболочке, наиболее вероятно находятся в соответствующей круглой области.Чем дальше мы идем от ядра, тем больше номер оболочки и тем выше уровень энергии (Рисунок \ (\ PageIndex {1} \)). Положительно заряженные протоны в ядре стабилизируют электронные орбитали за счет электростатического притяжения между положительными зарядами протонов и отрицательными зарядами электронов. Таким образом, чем дальше электрон находится от ядра, тем больше энергии он имеет.
Рисунок \ (\ PageIndex {1} \) : Различные оболочки нумеруются главными квантовыми числами.
Эта квантовомеханическая модель, в которой электроны находятся в атоме, может использоваться для анализа электронных переходов, событий, когда электрон перемещается с одного энергетического уровня на другой. Если переход к более высокому уровню энергии, энергия поглощается, и изменение энергии имеет положительное значение. Чтобы получить количество энергии, необходимое для перехода на более высокий энергетический уровень, фотон поглощается атомом. Переход на более низкий энергетический уровень предполагает выделение энергии, и изменение энергии является отрицательным.2_ \ ce i} \ right) \: \ ce J \ end {align *} \]
Значения n f и n i являются конечным и начальным энергетическими состояниями электрона.
Главное квантовое число является одним из трех квантовых чисел, используемых для характеристики орбиты. Атомная орбита, которая отличается от -й орбиты , является общей областью в атоме, внутри которой электрон наиболее вероятно может находиться. Квантовая механическая модель определяет вероятность нахождения электрона в трехмерном пространстве вокруг ядра и основана на решениях уравнения Шредингера.Кроме того, главное квантовое число определяет энергию электрона в водороде или водородоподобном атоме или ионе (атом или ион только с одним электроном) и общую область, в которой дискретные уровни энергии электронов в мульти электронные атомы и ионы расположены.
Другим квантовым числом является l , квантовое число углового момента. Это целое число, которое определяет форму орбиты и принимает значения: l = 0, 1, 2,…, n — 1.Это означает, что орбита с n = 1 может иметь только одно значение l , l = 0, тогда как n = 2 разрешает l = 0 и l = 1 и так далее. Главное квантовое число определяет общий размер и энергию орбитали. Значение l определяет форму орбиты. Орбитали с одинаковым значением л и образуют подоболочку. Кроме того, чем больше квантовое число момента импульса, тем больше момент импульса электрона на этой орбите.
Орбиталис l = 0 называются s orbitals (или s подоболочек). Значение l = 1 соответствует p орбиталей. Для данного n , p орбиталей составляют p подоболочки (например, 3 p , если n = 3). Орбитали с l = 2 называются d орбиталей, за которыми следуют f-, g- и h- орбиталей для l = 3, 4, 5, и есть более высокие значения, которые мы не буду рассматривать.
Существуют определенные расстояния от ядра, на которых плотность вероятности нахождения электрона, расположенного на конкретной орбитали, равна нулю. Другими словами, значение волновой функции 000 равно нулю на этом расстоянии для этой орбитали. Такое значение радиуса r называется радиальным узлом. Количество радиальных узлов на орбите составляет n — l — 1.
Рисунок \ (\ PageIndex {2} \) : Графики показывают вероятность (ось y) нахождения электрона для орбиталей 1s, 2s, 3s как функцию расстояния от ядра.
Видео \ (\ PageIndex {2} \) : Анализ вероятности нахождения электронов .
Рассмотрим примеры на рисунке \ (\ PageIndex {3} \). Изображенные орбитали имеют тип с , таким образом, l = 0 для всех из них. Из графиков плотностей вероятностей видно, что существуют места 1 — 0 — 1 = 0, где плотность равна нулю (узлы) в течение 1 с ( n = 1), 2 — 0 — 1 = 1 узел для 2 с и 3 — 0 — 1 = 2 узла для 3 с орбиталей.
Распределение электронной плотности с является сферическим, а подоболочка p имеет форму гантели. Орбитали d и f являются более сложными. Эти формы представляют трехмерные области, в которых, вероятно, находится электрон.
Рисунок \ (\ PageIndex {3} \) : Формы орбиталей s, p, d и f.
Если у электрона есть момент импульса ( l ≠ 0), то этот вектор может указывать в разных направлениях.Кроме того, z компонента углового момента может иметь более одного значения. Это означает, что если магнитное поле приложено в направлении z , орбитали с различными значениями компонента углового момента z будут иметь разные энергии, возникающие в результате взаимодействия с полем. Магнитное квантовое число, называемое м, л, , указывает z компонент углового момента для конкретной орбитали. Например, для орбиты с , l = 0, а единственное значение м l равно нулю.Для p орбиталей l = 1 и m l могут быть равны –1, 0 или +1. Вообще говоря, м л может быть равно — л , — ( л — 1),…, –1, 0, +1,…, ( л — 1), л , Общее число возможных орбиталей с одинаковым значением л (подоболочка) составляет 2 л + 1. Таким образом, существует одна с -орбиталь для мл = 0 , есть три p — орбитали для мл = 1 , пять d -орбиталей для мл = 2 , семь f -орбиталей для мл = 3 и так далее.Главное квантовое число определяет общее значение электронной энергии. Квантовое число момента импульса определяет форму орбитали. А магнитное квантовое число определяет ориентацию орбитали в пространстве, как это видно на рисунке \ (\ PageIndex {3} \).
Рисунок \ (\ PageIndex {4} \) : На диаграмме показаны энергии электронных орбиталей в многоэлектронном атоме.
Рисунок \ (\ PageIndex {4} \) иллюстрирует уровни энергии для различных орбиталей.Число перед именем орбиты (например, 2 с , 3 р и т. Д.) Обозначает главное квантовое число n . Буква в названии орбиты определяет подоболочку с определенным квантовым числом углового момента l = 0 для с орбиталей, 1 для p орбиталей, 2 для d орбиталей. Наконец, существует более одной возможной орбитали для l ≥ 1, каждая из которых соответствует определенному значению m l .В случае атома водорода или одноэлектронного иона (такого как He + , Li 2 + и т. Д.) Энергии всех орбиталей с одинаковыми n одинаковы. Это называется вырождением, а уровни энергии для того же главного квантового числа, n , называются вырожденными уровнями энергии. Однако в атомах с более чем одним электроном это вырождение устраняется электрон-электронными взаимодействиями, и орбитали, принадлежащие разным подоболочкам, имеют разные энергии.Орбитали внутри одной и той же подоболочки (например, нс, нп, нд, нф , такие как 2 р , 3 с ) все еще вырождены и имеют ту же энергию.
Хотя три квантовых числа, обсуждавшиеся в предыдущих параграфах, хорошо подходят для описания электронных орбиталей, некоторые эксперименты показали, что их недостаточно для объяснения всех наблюдаемых результатов. В 1920-х годах было продемонстрировано, что при рассмотрении спектров водородных линий с чрезвычайно высоким разрешением некоторые линии на самом деле представляют собой не одиночные пики, а скорее пары близко расположенных линий.Это так называемая тонкая структура спектра, и это подразумевает, что существуют дополнительные небольшие различия в энергиях электронов, даже если они находятся на одной орбите. Эти наблюдения привели Сэмюэля Гоудсмит и Джорджа Уленбека к предположению, что электроны имеют четвертое квантовое число. Они назвали это спиновым квантовым числом, или м с .
Три других квантовых числа, n , l и m l , являются свойствами конкретных атомных орбиталей, которые также определяют, в какой части пространства электрон может быть расположен с наибольшей вероятностью.Орбитали являются результатом решения уравнения Шредингера для электронов в атомах. Спин электрона — это другое свойство. Это полностью квантовое явление, не имеющее аналогов в классическом мире. Кроме того, он не может быть получен из решения уравнения Шредингера и не связан с нормальными пространственными координатами (такими как декартовы x , y и z ). Спин электрона описывает собственное вращение или вращение электрона. Каждый электрон действует как крошечный магнит или крошечный вращающийся объект с угловым моментом, даже если это вращение нельзя наблюдать с точки зрения пространственных координат.
Величина общего спина электрона может иметь только одно значение, и электрон может «вращаться» только в одном из двух квантованных состояний. Один из них называется α-состоянием, причем компонент вращения z находится в положительном направлении оси z . Это соответствует спиновому квантовому числу \ (m_s = \ dfrac {1} {2} \). Другой называется β-состоянием, причем компонент спина z является отрицательным и \ (m_s = — \ dfrac {1} {2} \). Любой электрон, независимо от атомной орбитали, в которой он находится, может иметь только одно из этих двух значений спинового квантового числа.Энергии электронов, имеющих \ (m_s = — \ dfrac {1} {2} \) и \ (m_s = \ dfrac {1} {2} \), различны, если приложено внешнее магнитное поле.
Рисунок \ (\ PageIndex {5} \) : Электроны со значениями спина \ ( ± \ ce {1/2} \) во внешнем магнитном поле.
Рисунок \ (\ PageIndex {5} \) иллюстрирует это явление. Электрон действует как крошечный магнит. Его момент направлен вверх (в положительном направлении оси z ) для спинового квантового числа \ (\ dfrac {1} {2} \) и вниз (в отрицательном направлении z ) для квантового числа спина из \ (- \ ce {1/2} \).Магнит имеет меньшую энергию, если его магнитный момент выровнен с внешним магнитным полем (левым электроном), и более высокая энергия магнитного момента противоположна приложенному полю. Вот почему электрон с \ (m_s = \ dfrac {1} {2} \) имеет немного меньшую энергию во внешнем поле в положительном направлении z , а электрон с \ (m_s = — \ dfrac {1) } {2} \) имеет немного более высокую энергию в том же поле. Это верно даже для электрона, занимающего ту же орбиту в атоме.Спектральная линия, соответствующая переходу электронов с одной и той же орбитали, но с разными спиновыми квантовыми числами, имеет два возможных значения энергии; таким образом, линия в спектре покажет тонкое расщепление структуры.
Видео \ (\ PageIndex {3} \) : Неопределенность местоположения электронов .
,Химический элемент алюминий классифицируется как другой металл. Он был открыт в 1750-х годах Андреасом Маргграфом.
Зона данных
Классификация: | Алюминий — это «другой металл» |
Цвет: | серебристый |
Атомный вес: | 26,98154 г / моль |
Штат: | твердый |
Точка плавления: | 660.32 o C, 933,57 K |
Точка кипения: | 2466,85 o C, 2740,00 K |
электронов: | 13 |
Протонов: | 13 |
нейтронов в наиболее распространенном изотопе: | 14 |
Электронных оболочек: | 2,8,3 |
Электронная конфигурация: | 1с 2 2с 2 2р 6 3с 2 3р 1 |
Плотность при 20 o C: | 2.702 г / см 3 |
Реакций, Соединений, Радиусов, Проводимости
Атомный объем: | 9,98 см 3 / моль |
Структура: | ГЦК: гранецентрированная кубика |
Твердость: | 2,8 млн. |
Удельная теплоемкость | 0,90 Дж г -1 К -1 |
Тепло плавления | 10.790 кДж моль -1 |
Теплота распыления | 326 кДж моль -1 |
Теплота испарения | 293,40 кДж моль -1 |
1 st энергия ионизации | 577,6 кДж моль -1 |
2 и энергия ионизации | 1816,6 кДж моль -1 |
3 и энергия ионизации | 2744.7 кДж моль -1 |
Сродство к электрону | моль 42,6 кДж -1 |
Минимальное число окисления | 0 |
мин. общее окисление нет. | 0 |
Максимальное число окисления | 3 |
Макс. общее окисление нет. | 3 |
электроотрицательность (шкала Полинга) | 1,61 |
Объем поляризуемости | 8.3 Å 3 |
Реакция с воздухом | умеренно, с / х ⇒ Al 2 O 3 |
Реакция с 15 М HNO 3 | пассивировал |
Реакция с 6 М HCl | , ⇒ H 2 , AlCl 3 |
Реакция с 6 М NaOH | , ⇒ H 2 , [Al (OH) 4 ] — |
Оксид (ы) | Al 2 O 3 |
Гидрид (ы) | AlH 3 |
Хлорид (ы) | AlCl 3 и Al 2 Cl 6 |
Атомный радиус | 125 вечера |
Ионный радиус (1+ ион) | — |
Ионный радиус (2+ ион) | — |
Ионный радиус (3+ ион) | 53.17:00 |
Ионный радиус (1 ион) | — |
Ионный радиус (2-ионный) | — |
Ионный радиус (3-ионный) | — |
Теплопроводность | 237 Вт м -1 К -1 |
Электропроводность | 37,6676 x 10 6 S -1 |
Точка замерзания / плавления: | 660.32 o C, 933,57 K |
Луи де Морво полагал, что в оксиде алюминия может быть обнаружен новый металл. Он был прав, но не смог его изолировать. Де Морво разработал первый систематический метод именования химикатов, и, как мы видим, он был пионером аэростата.
Периодическая таблица алюминия
Соседство
Открытие алюминия
Доктор Дуг Стюарт
Люди использовали квасцы с древних времен для окрашивания, загара и остановки кровотечения.Квасцы — сульфат калия-алюминия.
В 1750-х годах немецкий химик Андреас Маргграф обнаружил, что может использовать раствор щелочи для осаждения нового вещества из квасцов. Маргграф ранее был первым человеком, который выделил цинк в 1746 году.
Вещество Маргграф, полученное из квасцов, было названо глиноземом французским химиком Луи де Морво в 1760 году. Теперь мы знаем, что оксид алюминия представляет собой оксид алюминия — химическая формула Al 2 O 3 .
Де Морво полагал, что оксид алюминия содержит новый металлический элемент, но, как и Маргграф, он не смог извлечь этот металл из его оксида. (1), (2)
В 1807 или 1808 годах английский химик Хамфри Дэви разлагал глинозем в электрической дуге, чтобы получить металл. Металл был не чистым алюминием, а сплавом алюминия и железа.
Дэви назвал новый металлический алюминий, а затем переименовал его в алюминий. (3)
Алюминий был впервые выделен в 1825 году Хансом Кристианом Эрстедом (Oersted) в Копенгагене, Дания, который сообщил, что «кусок металла, который по цвету и блеску чем-то напоминает олово».
Эрстед производил алюминий путем восстановления хлорида алюминия с помощью калийно-ртутной амальгамы.Ртуть удаляли нагреванием, чтобы оставить алюминий.
Немецкий химик Фридрих Велер (Woehler) повторил эксперимент Эрстеда, но обнаружил, что он дает только металлический калий. Wöhler разработал метод еще два года спустя, реагируя улетученным трихлоридом алюминия с калием с получением небольших количеств алюминия. (1)
В 1856 году Берцелиус заявил, что именно Вёлер добился успеха в 1827 году. Поэтому Вёлеру обычно отдают должное за открытие.
Совсем недавно Фог повторил первоначальные эксперименты и показал, что метод Эрстеда может дать удовлетворительные результаты.
Это усилило приоритет оригинальной работы Эрстеда и его позиции первооткрывателя алюминия. (4)
В течение почти трех десятилетий алюминий оставался новинкой, дорогостоящим в производстве и более ценным, чем золото, пока в 1854 году Анри Сен-Клер Девиль в Париже, Франция, не нашел способ заменить калий гораздо более дешевым натрием в реакции выделения алюминия. Алюминий тогда стал более популярным, но, поскольку он все еще был довольно дорогим, использовался в декоративных, а не практических ситуациях.
Наконец, в 1886 году американский химик Чарльз Мартин Холл и французский химик Поль Эроулт независимо друг от друга изобрели процесс Холла-Эрульта, который недорогим способом изолирует металлический алюминий от его оксида электролитически.
Алюминий до сих пор производится с использованием процесса Холла-Эрульта.
, Что такое уровень шума?
Любой нежелательный звук, который вызывает раздражение, раздражение и боль для человеческого уха, называется шумом. Уровень шума измеряется в дБ (A), что указывает на громкость звука.Уровень шума относится к уровню шума в децибелах, производимому любым устройством или машиной. В целом, человеческое ухо может выдерживать уровень шума до 85 дБ и все, что может повлиять на его производительность и качество жизни. Уровни общих звуков в децибелах выше 80 дБ считаются «громкими», в то время как уровни общих звуков в диапазоне от 100 до 125 дБ называются «неудобными». Таким образом, все машины, работающие в зоне, должны производить шум в пределах приемлемого уровня шума, чтобы поддерживать благополучие окружающих.
Допустимый уровень шума в Индии
CPCB установил допустимый уровень шума в Индии для различных областей. В промышленных зонах допустимый предел составляет 75 дБ в дневное время и 70 дБ в ночное время. В коммерческих зонах он составляет 65 дБ и 55 дБ, а в жилых районах — 55 дБ и 45 дБ соответственно днем и ночью. Кроме того, существует категория, называемая «тихая зона», которая включает зоны, которые находятся в пределах 100 метров от помещений школ, колледжей, больниц и судов.Допустимый предел шума в этой зоне составляет 50 дБ днем и 40 дБ ночью.
Зона | Допустимые стандарты уровня шума в дневное время (дБ) | Допустимые стандарты уровня шума ночью (дБ) |
Промышленная зона | 75 | 70 |
Коммерческая зона | 65 | 55 |
Жилая зона | 55 | 45 |
Тихая зона | 50 | 40 |
Приемлемый уровень шума генератора
В соответствии с рекомендациями CPCB, максимально допустимый уровень шума дизель-генератора для новых генераторов с номинальной мощностью до 1000 кВА составляет 75 дБ (А).Кроме того, должен быть акустический кожух для дизель-генератора. Кожух генератора для снижения шума помогает акустически обработать помещение. Корпус изготовлен из звукоизолирующих материалов генератора, которые снижают шумовое загрязнение, чтобы обеспечить бесперебойную работу соседей. Приемлемый уровень шума генератора наборов DG, используемых для бытовых целей, составляет 85-90 дБ (A).
Что такое акустический корпус?
Большинство генераторов поставляются с акустическими корпусами. Это в основном закрытая коробчатая / инженерная конструкция, которая минимизирует, уменьшает, а также ослабляет шум, создаваемый встроенной в него машиной.Акустический кожух для дизель-генератора обеспечивает ослабление звука, производимого им, чтобы он не воздействовал на людей, находящихся поблизости.
Различные типы генераторов по уровню шума
На основе стандартов уровня шума генератора существует три типа генераторов:
- Silent / Soundproof генераторы
- Генераторы с уровнем шума менее 75 дБ
- Генераторы с уровнем шума менее 120 дБ
1.Бесшумные или звуконепроницаемые генераторы
Silent Gensets — это те, которые оснащены звуконепроницаемым корпусом. Звукоизоляционный корпус генератора содержит композитные материалы, которые включают в себя твердые материалы, предназначенные для отражения обратного звука, и пористые, а также упругие материалы, которые поглощают шум и преобразуют его в тепловую энергию. Таким образом, можно предотвратить шум от загрязнения окружающей среды генератора. Тихие генераторы идеально подходят для использования в тихих зонах, таких как школы, больницы, суды и т. Д.Они оснащены такими характеристиками, как искровой резистор, автоматическое отключение масла и полностью закрытое покрытие. Работать легко и удобно, даже если вы близки к тихим генераторным установкам.
2. Генераторы с уровнем шума менее 75 дБ
Естественно, что чем больше выходная мощность, тем громче будет генератор. Таким образом, если вы хотите генератор с более высокой номинальной мощностью, то вы должны быть готовы к решению некоторых проблем с шумом. Обычно генераторы с уровнем шума менее 75 дБ могут найти применение в коммерческих зонах, поскольку потребность в выходной мощности высока.
3. Генераторы с уровнем шума менее 120 дБ
Генераторы с уровнем шума более 75 дБ, но менее 120 дБ идеально подходят для использования в промышленных зонах. Хотя они производят больше шума, чем другие генераторные установки, они могут обеспечить большую выходную мощность, что важно для крупных производственных предприятий и отраслей промышленности. Вот почему производитель, скорее всего, выберет этот тип генератора.
Обратитесь к ближайшим дилерам генераторов и получите бесплатные предложения