Электрическая схема бензогенератора: Бензиновый генератор Huter — устройство и схема – СамЭлектрик.ру
Руководство по ремонту генераторов ( учебное пособие)
Диоды
Диоды пропускают ток только в одном направлении. Они используются для выпрямления тока в обмотках ротора. Ток, текущий в обмотках ротора, порождает магнитное поле, необходимое для работы генератора. На рисунке 1 изображен одинарный диод.
Рисунок 1
Обозначение
Диоды защищены варистором. Варистор пропускает ток через себя, в том случае, когда высокое напряжение может спровоцировать повреждение диода. На рисунке 2 изображен варистор.
Рисунок 2
\
Обозначение
В некоторые диодные сборки входит небольшой конденсатор. Этот конденсатор подавляет электронный шум (EMC) и его можно проверить только при помощи очень чувствительного прибора. На рисунке 3 изображен конденсатор.
Рисунок 3
Обозначение
На рисунке 4 изображены две стандартные диодные сборки, которые Вы можете найти в роторах синхронных генераторов. В роторе может быть одна или две диодных сборки.
Диодная сборка без конденсатора (рисунок 4)
Обозначение (рисунок 4)
Диодная сборка с конденсатором (рисунок 4)
Обозначение (рисунок 4)
Проверка диодов
Для проверки диода, установленного в роторной обмотке, необходимо отсоединить один контакт диода от обмотки. Для этого используйте мощный паяльник с тонким жалом. Отсоедините диод от варистора и конденсатора (если имеется). Подсоедините измеритель сопротивления к диоду (рисунок 5). Следуйте инструкции на измеритель.
Рисунок 5 (Измеритель сопротивления и диод)
Альтернативой служит маленькая 12 В лампа-тестер. Используя источник 12 В, соединить лампочку и диод в последовательную электрическую цепь. При включении диода в прямом направлении в цепи потечет ток и лампочка загорится. При включении диода в обратном направлении лампочка не должна гореть.
Рисунок 6. (Аккумулятор, лампа-тестер, диод)
Если диод неисправен, то нужно заменить диодную сборку полностью (диод, варистор, конденсатор). Новый диод должен быть подсоединен в том же направление, что и предыдущий. Все диоды помечены серебряной или красной полоской, указывающей направление. Не забудьте проверить роторную обмотку на непрерывность, прежде чем заменять диодную сборку. Если в роторе одна диодная сборка и неисправен диод, то выходное напряжение будет равно 4-18В (остаточный магнетизм). Если в роторе две диодные сборки, то при неисправности одного диода выходное напряжение будет примерно равно 170В.
Проверка варисторов
Тестирование варистора не производится, поэтому при проверке диодной сборки его рекомендуется заменить.
Проверка конденсаторов ротора
ЕМС конденсаторы не тестируются.
Диодный мост
Диодные мосты используются для преобразования переменного тока в постоянный. Они применяются в цепи зарядки аккумуляторной батареи, цепи возбуждения в сварочных генераторах постоянного тока и 3-х фазных генераторах прямого возбуждения. Диодный мост, состоящий из четырех диодов и варистора, изображен на рисунках 7 и 8.
Рисунок 7. Диодный мост
Рисунок 8.Схема диодного моста
Диодный мост защищен варистором.
Проверка диодного моста
В соответствии с рис. 9 каждый из четырех диодов тестируется по отдельности при помощи измерителя напряжения или лампы-тестера.
Если один из диодов неисправен, следует заменить диодный мост.
1. Конденсатор цепи возбуждения
Конденсаторы используются в цепи возбуждения саморегулируемых генераторов.
Конденсатор соединен с обмоткой возбуждения (рисунок 1В). Ток, который течет через конденсатор, порождает ток в обмотках ротора, который, в свою очередь, порождает магнитное поле ротора. Магнитное поле ротора индуцирует электрическое напряжение в силовых обмотках. Емкость конденсатора выбирается исходя из выходного напряжения генератора. Поэтому, при необходимости замены следует устанавливать конденсатор той же емкости.
Если конденсатор возбуждения неисправен, то генератор теряет способность поддерживать напряжение и выходное напряжение падает до 9-27В и поддерживается только остаточным магнетизмом на роторе.
Если при проверке выходного напряжения есть подозрение о неполадке конденсатора, то для теста необходимо заменить конденсатор новым с таким же или большим значением номинального напряжения. Емкость тестирующего конденсатора значения не имеет. Появление выходного напряжения (160-250В) является подтверждением неисправности конденсатора.
2.1. Проверка конденсатора
Подсоедините измерительный прибор к клеммам конденсатора. Прибору может понадобиться до 10 секунд для снятия показаний, которые должны находиться в пределах значений, указанных на конденсаторе (рисунок 1С).
3. Проверка обмоток статора
Тестирование обмотки статора производится высокоточным омметром. На рисунке 4 изображена электрическая схема для генератора EP3.0. В таблице указаны значения сопротивления статора. Значения сопротивления даны при температуре 20º С, они зависят как от температуры, так и от типа омметра, данные могут расходиться с указанными в таблице до 20%.
Основная (Силовая) обмотка
Подключите омметр к одной из розеток генератора и сделайте проверку на обрыв цепи (рис. 1). Проследите за электропроводкой от розетки до предохранителя и панели генератора. В соединительном блоке статора измерьте сопротивление между черным и белым проводом (рис. 2), а затем между коричневым и голубым проводом.
Схема показывает, что фактически проводятся измерения двух частей основной (силовой) обмотки. Бесконечное или высокое сопротивление свидетельствуют о разомкнутости цепи в обмотке статора. Низкий показатель сопротивления свидетельствует о коротком замыкании между обмотками статора.Проверьте отсутствие замыкания на корпус каждой обмотки. Сопротивление между обмотками и корпусом статора должно равняться бесконечности. Значение сопротивления, отличное от бесконечного, свидетельствует о КЗ на корпус – необходимо заменить статор.
Обмотка зарядки АКБ
В некоторых генераторах есть обмотка зарядки АКБ. Способ проверки обмотки зарядки АКБ, статора и обмотки возбуждения одинаков.
Обмотка возбуждения
Отсоединив два серых провода от конденсатора, измерьте сопротивление обмотки возбуждения на контактах (рис. 3).
Подсоедините один щуп омметра к корпусу, а второй — к обмотке возбуждения статора. Все показания, кроме бесконечности, свидетельствуют о замыкании на корпус обмотки возбуждения статора – необходимо заменить статор.
4. Проверка обмоток ротора
Для проверки обмотки ротора один контакт диодной сборки должен быть отпаян. Для этого используйте паяльник и плоскогубцы. Провода диодной сборки и провода на роторе перекручены и спаяны при производстве. Необходимо соблюдать особую осторожность при размыкании соединения, чтобы не повредить обмотку ротора и пластиковые части диодной сборки.
Как показано на рисунках 1-3, мощным паяльником с узким жалом нагрейте припой вокруг каждого соединения диодной сборки до тех пор, пока не станет возможным отсоединить отпаянные провода диодной сборки от обмотки ротора. Осторожно отсоедините отпаянные провода обмотки ротора от диодной сборки и изолируйте их от диода, варистора и EMC конденсатора.
В соответствие с рисунком 4, подсоедините измерительный прибор к обмотке ротора, предварительно отсоединив ее от диода ротора, варистора и EMC конденсатора. Измерьте сопротивление на обмотке и проверьте КЗ на корпус ротора. Замените ротор, если проверка выявила неполадки.
5. Генераторы конденсаторного возбуждения
В электростанциях Briggs&Stratton Power Products используются саморегулируемые генераторы с конденсаторным возбуждением. Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности и вращается внутри неподвижного статора, который крепится к картеру двигателя.
Как правило, статор имеет две обмотки: обмотку возбуждения и силовую обмотку. У некоторых генераторов есть дополнительная обмотка зарядки АКБ.
Процесс возбуждения (превращение ротора в магнит) осуществляется обмоткой возбуждения. Розетки соединяются с силовой обмоткой. При вращениb магнита (ротора) внутри силовой обмотки статора, вырабатывается выходное напряжение.
Постоянный ток в роторной обмотке создает магнитное поле ротора. В обмотке возбуждения создается переменный ток, который конвертируется в постоянный ток диодом ротора. При завершении работы генератора, в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом.
Конденсатор подсоединен к обмотке возбуждения. Ток, проходящий через конденсатор, индуцирует ток в обмотках ротора, определяя, таким образом, величину магнитного потока ротора и напряжение на выходе генератора.
Поиск неисправностей
Для нахождения неисправностей необходимо:
Запустить двигатель и проверить частоту вращения, при необходимости отрегулировать.
Проверить выходное напряжение непосредственно в розетке.
(Используя вольтметр, имейте в виду, что при неисправном генераторе напряжение может быть нулевым или очень низким).
ВНИМАНИЕ: Нулевое напряжение свидетельствует о разрыве цепи или о полной потере остаточного магнетизма в роторе.
Восстановление остаточного магнетизма
Проводить данную операцию только в случае нулевого напряжения на выходе электростанции и если не был найден разрыв цепи генератора и контрольной панели.
Для восстановления остаточного магнетизма нужно подать постоянный ток 12 В в силовую обмотку, подсоединив аккумулятор непосредственно к розетке. Необходимо отключить систему зажигания двигателя, отсоединив высоковольтный провод от свечи зажигания.
1. Выключить двигатель.
2. Подсоединить аккумулятор непосредственно к розетке генератора
(полярность значения не имеет).
3. Прокрутить двигатель стартером. ЗАМЕЧАНИЕ: 4 полных оборота при помощи ручного стартера или примерно 3-4 секунды при помощи электрического стартера.
4. Отсоединить аккумулятор.
5. Подсоединить высоковольтный провод к свече зажигания.
6. Запустить двигатель и проверить выходное напряжение.
7. Если остаточный магнетизм восстановлен, то выходное напряжение будет
230 В.
Альтернативный способ
Если небольшая часть магнетизма сохранилась в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.
1. Запустить и прогреть двигатель.
2. Тягой управления дросселем медленно увеличить число оборотов в минуту до 3600, на 5 секунд.
3. Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.
6. Генераторы прямого возбуждения серии ER-R с регулятором напряжения AVR
Генераторы Sincro серии ER-R прямого возбуждения, используемые на электростанциях Briggs&Stratton Power Products, оснащены автоматическим регулятором напряжения (AVR).
Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности двигателя и вращается внутри неподвижного статора, который прикреплен к картеру двигателя. Статор имеет две обмотки: обмотку возбуждения и силовую обмотку. Процесс возбуждения (превращение ротора в магнит) осуществляется обмоткой возбуждения. Розетки соединяются с силовой обмоткой. При вращение магнита (ротора) внутри силовой обмотки статора, вырабатывается выходное напряжение.
Магнитное поле ротора создается постоянным током в роторной обмотке. В обмотке возбуждения статора возникает переменный ток. Переменный ток из обмотки возбуждения попадает в обмотки ротора через регулятор напряжения и контактные кольца.
Регулятор напряжения выпрямляет переменный электрический ток в постоянный. При завершении работы генератора в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом.
Автоматический регулятор напряжения (AVR) контролирует силу тока в обмотках ротора и, следовательно, магнитный поток ротора и напряжение на выходе.
Регулятор напряжения
Регулятор напряжения (рис. 1) соединяется с силовой обмоткой, обмоткой возбуждения и обмоткой ротора через контактные кольца и щетки. Контролируемое напряжение силовой обмотки измеряется и сравнивается с базовым напряжением, которое устанавливается регулировочным винтом. Если контролируемое напряжение ниже базового (низкое напряжение в розетке), регулятор автоматически увеличивает ток в роторе. Если контролируемое напряжение выше рекомендуемого (высокое напряжение в розетке), регулятор уменьшает силу тока в роторе, и выходное напряжение уменьшается. Постоянный контроль над силой тока в роторе позволяет поддерживать стабильное выходное напряжение.
Корректировка регулятора напряжения
ВНИМАНИЕ: Корректировка должна производиться при включении электростанции и со снятой крышкой генератора. Избегайте контакта с горячей выхлопной трубой и электрическими проводами. Перед тем как корректировать регулятор напряжения, убедитесь, что частота вращения двигателя в норме.
1. Запустите двигатель и дайте ему прогреться в течение нескольких минут.
2. Используйте точный вольтметр для измерения напряжения в розетке.
3. Отрегулируйте напряжение регулировочным винтом, как показано на рисунке 1, используя отвертку.
ВНИМАНИЕ: Второй винт на рисунке 1 не подвергается регулировке. Регулировка произведена на заводе-производителе. При установке нового регулятора напряжения зафиксируйте второй винт в среднем положении и отрегулируйте напряжение, как описано выше.
Поиск неисправностей
Для нахождения неисправностей необходимо:
Запустить двигатель и проверить частоту вращения, при необходимости отрегулировать.
Проверить выходное напряжение непосредственно в розетке.(Используя вольтметр, имейте в виду, что напряжение может быть нулевым или очень низким)
ВНИМАНИЕ: Нулевое напряжение свидетельствует о разрыве цепи или о полной потери остаточного магнетизма ротора.
Запустить двигатель и измерить выходное напряжение в розетке.
Неисправности регулятора напряжения AVR
Неисправный регулятор напряжения подлежит замене на новый. Единственная часть регулятора напряжения, которую можно заменить отдельно, это предохранитель 3 А. Неисправность регулятора следует находить путем исключения:
1. Подать постоянный ток в обмотку ротора (смотрите ниже 6.4. пункты 1-6).
2. Измерить выходное напряжение обмотки возбуждения (200-250В)
3. Измерить напряжение основной обмотки (примерно 110-130В)
Если при тестировании, Вы получили значения напряжения указанные выше, то регулятор напряжения необходимо заменить. ОБЪЯСНЕНИЕ: Данные тесты подтверждают, что обмотка возбуждения и силовая обмотка исправны. Наличие выходного напряжения в розетке подтверждает исправность щеток, контактных колец и ротора. Следовательно, неисправен регулятор напряжения.
Восстановление остаточного магнетизма
Проводить данную операцию только в случае нулевого напряжения на выходе электростанции и если не был найден разрыв цепи генератора и контрольной панели.
Для восстановления остаточного магнетизма нужно подсоединить аккумулятор 12В к проводам, соединяющим AVR и набор щеток, и запустить двигатель. ВНИМАНИЕ: Необходимо снять крышку генератора и запустить двигатель. Убедитесь, что провода подсоединены правильно и не пытайтесь отсоединить провода при включенном двигателе.
1. Снять верхнюю крышку генератора.
2. Найти плюсовой и минусовой провод регулятора напряжения.
3. Отсоединить провода возбуждения от регулятора напряжения.
4. Подсоединить аккумулятор 12В непосредственно к плюсовому и минусовому проводам щеток.
5. Установить панель генератора для измерения выходного напряжения в розетках.
6. Запустить двигатель и измерить напряжение в розетке 230 В.
7. Если причина в остаточном магнетизме, то выходное напряжение восстановится.
8. Отсоединить аккумулятор и соединение.
9. Снова присоединить провода к обмотке возбуждения.
10. Запустить двигатель и измерить выходное напряжение.
Альтернативный способ
Если небольшая часть магнетизма сохраняется в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.
1. Запустить и прогреть двигатель.
2. Тягой управления дросселем медленно увеличить частоту вращения до 3600 мин-1, на 5 секунд.
3. Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.
Проверка ротора
Для проверки ротора измерьте сопротивление на контактных кольцах. Проверьте, нет ли на них задиров.
7. Асинхронные генераторы
Асинхронные генераторы конденсаторного возбуждения устанавливаются на некоторых электростанциях Briggs&Stratton Power Products c вертикальным коленчатым валом двигателя. Неисправности асинхронного и синхронного генератора и пути их устранения похожи. Ребра на корпусе статора предназначены для охлаждения, ротор — цельный, без обмоток и диодов. Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности двигателя и вращается внутри неподвижного статора, который прикреплен к картеру двигателя.
Статор имеет две обмотки: обмотку возбуждения и силовую обмотку. Возбуждение (процесс, превращающий ротор в магнит) осуществляется обмоткой возбуждения. Розетки соединяются с силовой обмоткой. При вращении магнита (ротора), внутри силовой обмотки статора вырабатывается выходное напряжение.
При завершении работы генератора, в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом. Конденсатор подсоединен параллельно обмотке возбуждения статора. Ток, проходящий через конденсатор, индуцирует ток в обмотках ротора, который определяет силу магнитного потока ротора.
Поиск неисправностей
Для нахождения неисправностей асинхронного генератора нужно выполнить те же действия, что и для синхронного генератора, но необходимо помнить, что у асинхронного генератора отсутствуют обмотки ротора и диоды. Повреждение ротора может носить только механический характер (отказ подшипника), убедитесь, что ротор присоединен и вращается вместе с коленвалом двигателя.
Для нахождения неисправностей необходимо:
Запустить двигатель и проверить его частоту вращения. При необходимости отрегулировать.
Проверить выходное напряжение непосредственно в розетке.
(Используя вольтметр, имейте в виду, что напряжение может быть нулевым или очень низким)
ВНИМАНИЕ: Нулевое напряжение свидетельствует либо о разрыве цепи, либо о полной потери остаточного магнетизма в роторе.
Восстановление остаточного магнетизма
Проводить данную операцию только в случае нулевого напряжения на выходе электростанции и, если не был найден разрыв цепи генератора и приборной панели.
Для восстановления остаточного магнетизма нужно пропустить постоянный ток 12 В через силовую обмотку, подсоединив аккумулятор непосредственно к розетке. Необходимо отключить систему зажигания двигателя, отсоединив высоковольтный провод от свечи зажигания.
1. Выключить двигатель.
2. Подсоединить аккумулятор непосредственно к розетке генератора(полярность значения не имеет).
3. Прокрутить двигатель стартером. ЗАМЕЧАНИЕ: 4 полных оборота при помощи ручного стартера или примерно 3-4 секунды при помощи электрического стартера.
4. Отсоединить аккумулятор.
5. Подсоединить высоковольтный провод к свече зажигания.
6. Запустить двигатель и проверить выходное напряжение.
7. Если остаточный магнетизм восстановлен, то выходное напряжение будет 230 В.
Альтернативный способ
Если небольшая часть магнетизма сохраняется в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.
1. Запустить и прогреть двигатель.
2. Тягой управления дросселем медленно увеличить частоту вращения до3600 мин-1, на 5 секунд.
Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.
8. Сварочные генераторы переменного тока
В сварочных аппаратах Briggs & Stratton Power Products переменного тока используются саморегулируемые генераторы конденсаторного возбуждения фирмы Sincro, оснащенные переключателем, контролирующим величину сварочного тока. Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности двигателя и вращается внутри неподвижного статора, который прикреплен к картеру двигателя. Статор имеет две обмотки: обмотку возбуждения и основную обмотку.
Обмотка возбуждения защищена от перегрева предохранителем, состоит из 7 секций с переключателем сварочного тока (рис. 1). Процесс возбуждения (превращение ротора в магнит) осуществляется обмоткой возбуждения. При вращении магнита (ротора) внутри силовой обмотки статора, вырабатывается выходное напряжение.
Постоянный ток в роторной обмотке создает магнитное поле ротора. В обмотке возбуждения возникает переменный ток. В обмотке ротора переменный ток выпрямляется диодом. При завершении работы генератора в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом.
Конденсатор подсоединен параллельно обмотке возбуждения статора. Ток, проходящий через конденсатор, индуцирует ток в обмотках ротора, регулируя силу магнитного потока.
Когда включен режим сварки, основная обмотка соединяется последовательно с дополнительным индуктивным сопротивлением, сварочным импедансом (рис.2).
Поиск неисправностей
Для нахождения неисправностей сварочного генератора переменного тока нужно выполнить те же действия, что и для стандартного саморегулируемого генератора конденсаторного возбуждения. Поиск неисправностей следует начать в режиме генератора.
Для нахождения неисправностей необходимо:
Запустить двигатель и проверить его частоту вращения, при необходимости отрегулировать.
Проверить выходное напряжение непосредственно в розетке.(Используя вольтметр, имейте в виду, что напряжение может быть нулевым или очень низким)
ВНИМАНИЕ: Нулевое напряжение свидетельствует о разрыве цепи или о полной потери остаточного магнетизма на роторе.
Запустить двигатель и измерить напряжение в розетке.
Неисправности сварочной цепи
Некоторые неисправности можно обнаружить только при проведении сварочных работ. Сопротивление дополнительного индуктивного сопротивления (сварочный импеданс) измеряется в милиоммах. Сервисные измерительные приборы не обладают такой точностью. При неисправностях сварочного импеданса видны следы перегрева, повреждение изоляции и, как следствие, разрыв электрической цепи.
ВНИМАНИЕ: Перед тем как проверять сварочную цепь, убедитесь, что частота вращения двигателя в норме.
Восстановление остаточного магнетизма
Проводить данную операцию только в случае нулевого напряжения на выходе электростанции и, если не был найден разрыв цепи генератора и приборной панели.
Для восстановления остаточного магнетизма нужно подать постоянный ток 12В в силовую обмотку, подсоединив аккумулятор непосредственно к розетке. Необходимо отсоединить высоковольтный провод от свечи зажигания двигателя.
1. Отсоединить высоковольтный провод от свечи зажигания.
2. Подсоединить аккумулятор непосредственно к розетке генератора
(полярность значения не имеет).
3. Прокрутить двигатель стартером. ЗАМЕЧАНИЕ: 4 полных оборота при помощи ручного стартера или примерно 3-4 секунды при помощи электрического стартера.
4. Отсоединить аккумулятор.
5. Подсоединить высоковольтный провод к свече зажигания.
6. Запустить двигатель и проверить выходное напряжение.
7. Если остаточный магнетизм восстановлен, то выходное напряжение будет в норме.
Альтернативный способ
Если небольшая часть магнетизма сохраняется в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.
1. Запустить и прогреть двигатель.
2. Тягой управления дросселем медленно увеличить частоту вращения до
3600 мин-1, на 5 секунд.
3. Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.
Проверка основной обмотки
Смотрите раздел «Проверка обмоток статора».
Проверка сварочного импеданса
Для проверки сопротивления снимите показания между двумя контактами (рис.
3) обмотки. Помните, что сопротивление сварочного импеданса измеряется в долях Ом, поэтому проверьте целостность цепи. Любую неполадку, связанную со сварочным импедансом, легко заметить невооруженным глазом по следам перегрева.
Проверка обмотки возбуждения
Обмотка возбуждения соединена с 7-ми позиционным переключателем тока сварки.
Для проверки обмотки, измерьте выходное напряжение в режиме генератора при всех положениях переключателя. Напряжение должно изменяться примерно от 190 до 240 В.
При выключенном двигателе, установив переключатель на максимум, измерьте сопротивление обмотки, отсоединив конденсатор. Сравните значение с таблицей сопротивления.
ВНИМАНИЕ: Показания зависят от температуры окружающей среды и типа измерителя.
9. Сварочные генераторы постоянного тока
В сварочных аппаратах Briggs & Stratton Power Products постоянного тока используются генераторы Sincro прямого возбуждения, оснащенные трансформатором и переключателем, контролирующим силу сварочного тока. Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности двигателя и вращается внутри неподвижного статора, который прикреплен к картеру двигателя. Статор имеет три обмотки: обмотка возбуждения, силовая обмотка 230 В и сварочная обмотка. Процесс возбуждение (превращение ротора в магнит) осуществляется обмоткой возбуждения и поддерживается в зависимости от тока сварки. При вращение магнита (ротора) внутри обмотки статора, вырабатывается выходное напряжение.
Постоянный ток в роторной обмотке создает магнитное поле ротора. Обмотка возбуждения создает переменный ток. Переменный ток обмотки возбуждения выпрямляется диодным мостом и через щетки, и контактные кольца попадает в обмотку ротора. Сварочная цепь состоит из трех сварочных обмоток, последовательно соединенных со сварочным импедансом и сверхмощным диодным блоком. Центральная обмотка сварочного импеданса имеет дополнительную вторичную обмотку, соединенную со вторым диодным мостом. Эта вторичная обмотка поддерживает ток в роторе во время сварки. В цепи этой обмотки установлена тепловая защита по току. Диодный мост выпрямителя выпрямляет переменный электрический ток в постоянный. При завершении работы генератора, в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом.
Поиск неисправностей
Для нахождения неисправностей необходимо:
Запустить двигатель и проверить его частоту вращения, при необходимости отрегулировать.
Проверить выходное напряжение непосредственно в розетке генератора. (Используя вольтметр, имейте в виду, что напряжение может быть нулевым или очень низким)
ВНИМАНИЕ: Нулевое напряжение свидетельствует о разрыве цепи или о полной потери остаточного магнетизма ротора.
Неисправности сварочной цепи
Некоторые неисправности можно обнаружить только при проведении сварочных работ. Сопротивления основной сварочной обмотки и обмотки сварочного импеданса измеряются в милиоммах. Сервисные измерительные приборы не обладают такой точностью. При неисправностях в сварочной обмотке или обмотке сварочного импеданса видны следы перегрева, повреждение изоляции и, как следствие, разрыв электрической цепи.
ВНИМАНИЕ: Перед тем как проверить сварочную цепь, убедитесь, что частота вращения двигателя в норме.
Восстановление остаточного магнетизма
1. Снять нижнюю панель генератора.
2. Найти положительный (красный) и отрицательный (черный) провода между левым диодным мостом и щетками ротора (рис. 1).
3. Найти положительный и отрицательный провода правого диодного моста выпрямителя и изолировать их от выпрямителя.
4. Подсоединить аккумулятор 12 В непосредственно к положительному и отрицательному проводам, идущим к щеткам.
5. Запустить двигатель и измерить напряжение в розетке генератора (оно должно быть приблизительно 120-150В).
6. Если причина в остаточном магнетизме, то выходное напряжение восстановится.
7. Отсоединить аккумулятор и восстановить соединения.
Запустить двигатель и измерить напряжение на выходе генератора.
Альтернативный способ
Если небольшая часть магнетизма сохраняется в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.
1. Запустить и прогреть двигатель.
2. Тягой управления дросселем медленно увеличить частоту вращения до
3600 мин-1 на 5 секунд.
3. Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.
Проверка ротора
Для проверки ротора измерьте сопротивление на контактных кольцах. Проверьте, нет ли на них задиров.
Проверка сварочной обмотки
Сопротивление основной сварочной обмотки измеряется в долях Ом (0.02 Ом). Приборы, способные измерять такие значения, как правило, широко не применяются. Неисправностью основной сварочной обмотки может быть обрыв цепи со следами перегрева и повреждения изоляции, разрыв цепи или короткое замыкание витков также с видимыми следами повреждений.
Для проверки измерьте сопротивление между диодным мостом выпрямителя и сварочным импедансом (рис. 2).
Проверка первичной обмотки сварочного импеданса
Для проверки сопротивления обмотки сварочного импеданса снимите показания между двумя терминалами импеданса (рис. 3). Как и в случае с основной сварочной обмоткой, сопротивление обмотки сварочного трансформатора измеряется в долях Ом, поэтому проверьте целостность цепи. Любую неполадку, связанную со сварочным трансформатором легко заметить невооруженным глазом по следам перегрева и повреждений изоляции.
Проверка вторичной обмотки сварочного импеданса
Вторичная обмотка сварочного импеданса соединена с 7-ми позиционным переключателем тока сварки и 2-х позиционным селектором режимов работы (низкий или высокий ток). Для проверки обмотки, отсоедините белый и оранжевый провода от диодного моста выпрямителя и подсоедините к ним измеритель сопротивления (рис. 4). Измерьте сопротивление, опираясь на таблицу, приведенную ниже.
ВНИМАНИЕ: Показания зависят от температуры внешней среды и типа измерителя. Тестирование выявляет неисправность в любой части обмотки.
Вопрос: В чем заключаются различия между кВт и кВА?
Что такое коэффициент мощности?
Ответ: Для переменного синусоидального тока существуют три вида электрической мощности:
1. Активная мощность измеряется в ваттах (Вт). Эта мощность потребляется активной (омической) нагрузкой, например, коэффициент мощности (cos φ или pf) нагревательного элемента в чайнике равен 1.
2. Реактивная мощность измеряется в реактивных вольт-амперах (вар). Эта мощность потребляется реактивной нагрузкой (например, коэффициент мощности электромагнита равен 0).
3. Полная мощность измеряется в вольт-амперах (ВА). Потребляется любой нагрузкой и учитывает активную и реактивную составляющие мощности (невозможно произвести чисто реактивную или активную нагрузку). Комбинация различных элементов нагрузки означает, что одновременно потребляются и активная (Вт) и реактивная (вар) мощности.
Отношение полной мощности к активной называется коэффициентом мощности (cos φ или pf). Например, коллекторные двигатели ручных инструментов имеют коэффициент мощности pf= 0,95…1,0.
Если коэффициент мощности равен 1, то Активная мощность (Вт) = Полная мощность (ВА) (Вт = ВА при pf= 1.0).
Однофазные генераторы имеют коэффициент мощности равный 1, и Вт = ВА при pf = 1,0 и поэтому для однофазных генераторов указывается активная мощность в Ваттах (Вт) или килоВаттах (кВт).
Трехфазные генераторы имеют меньший коэффициент мощности, который принимается равным 0.8, и поэтому для них указывается полная мощность в Вольт-Амперах (ВА) или килоВольт-Амперах (кВА).
Например, указана полная мощность 5 кВА при pf=0,8. Это значит, что активная мощность 3-х фазного генератора равна 4 кВт (5 кВА х 0,8 = 4 кВт).
Вопрос: Я приобрел электростанцию и хотел бы подключить ее к дому на случай перебоев с электричеством. Что мне следует сделать?
Ответ: При использовании электростанции как альтернативного источника энергии, необходимо принять меры предосторожности. Изолировать электростанцию от внешней сети, чтобы быть уверенным, что электростанция не будет питать всю округу и не убьет током электрика, пытающегося исправить неполадки в электросети.
Для этого, квалифицированным электриком должен быть установлен переключатель, позволяющий переключать основную систему электроснабжения на запасную и обратно.
Корпорация Briggs & Stratton выпускает ручной силовой переключатель BTS9200M. Силовой переключатель устанавливается между электросчетчиком и потребителями электроэнергии в доме. Переключатель позволяет запитывать дом либо от общей электросети, либо от электростанции.
Большинство зданий имеют УЗО (устройство защитного отключения) в распределительных щитах, предназначенное для работы с сетью с заземленной нейтралью. Электростанция имеет «плавающую землю». Для того, чтобы использовать это УЗО, нужно, чтобы квалифицированный электрик соединил нулевой провод, идущий от электростанции, с землей. Рекомендуется осуществлять этот монтаж в вилке, которая будет использоваться для соединения с электростанцией. Это позволяет не переделывать электростанцию и, при отключении от дома, использовать её отдельно. На штепсельной вилке должно быть предупреждение: «Не подключать к внешней сети: «соединение нейтраль-земля». Проводящий провод между электростанцией и переключателем не защищен УЗО, поэтому рекомендуется использовать кабель со стальной оплеткой.
В доме должно быть установлено низкоомное заземление согласно действующим правилам по обеспечению безопасности.
Вопрос: Какой мощности требуется электростанция, чтобы запустить электродвигатель?
Ответ: Это трудный вопрос, т. к. существует несколько видов электродвигателей с разными характеристиками.
Для некоторых двигателей, например, двигателей индуктивного типа, требуется дополнительная энергия для пуска (эти двигатели имеют высокие пусковые токи), поэтому необходима электростанция большей мощности.
Двигатели ручных инструментов, как правило, не требуют дополнительной мощности при пуске (пусковой ток равен номинальному).
Рекомендуется узнать у поставщика или производителя электродвигателей пусковые и номинальные токи.
Существует «грубое» правило: мощность электростанции должна превосходить мощность двигателя в 2.5-3 раза. Мощность двигателя выражается в кВт или л.с. Для того, чтобы перевести л.с. в кВт нужно умножить значение в л.с. на 3/4.
Вопрос: Какой мощности требуется электростанция, чтобы запустить электродвигатель?
Ответ: Это трудный вопрос, т. к. существует несколько видов электродвигателей с разными характеристиками.
Для некоторых двигателей, например, двигателей индуктивного типа, требуется дополнительная энергия для пуска (эти двигатели имеют высокие пусковые токи), поэтому необходима электростанция большей мощности.
Двигатели ручных инструментов, как правило, не требуют дополнительной мощности при пуске (пусковой ток равен номинальному).
Рекомендуется узнать у поставщика или производителя электродвигателей пусковые и номинальные токи.
Существует «грубое» правило: мощность электростанции должна превосходить мощность двигателя в 2.5-3 раза. Мощность двигателя выражается в кВт или л.с. Для того, чтобы перевести л.с. в кВт нужно умножить значение в л.с. на 3/4.
Вопрос: Могу ли я использовать бензиновую электростанцию при работе с чувствительными приборами?
Ответ: Значение выходного напряжения электростанции менее стабильно, чем напряжение главной сети. Частота вращения двигателя, который вращает генератор, падает при увеличении нагрузки. Частота выходного напряжения напрямую зависит от частоты вращения двигателя, вследствие этого частота будет изменяться в зависимости от нагрузки. Выходное напряжение зависит от температуры.
Переходное отклонение напряжения электростанций составляет 230В +/- 10 % во всем диапазоне изменения нагрузки от нуля до максимальной, что соответствует ГОСТу (см. ГОСТ 21671-82 «Электроагрегаты и электростанции бензиновые»). Это соответствует значениям электрического напряжения, которое подается главной сетью. Электростанции, оснащенные автоматическим регулятором напряжения (AVR), могут поддерживать выходное напряжение равное 230В +/- 2%.
Частота выходного напряжения электростанции варьируется в пределах от 53 Герц до 49 Герц во всем диапазоне изменения нагрузки от нуля до максимальной, тогда как напряжение в питающей сети изменяется не более, чем на 0.1 Герц.
Большинство электронных приборов справляются с этими значениями и функционируют нормально. Тем не менее, рекомендуется узнать у поставщика оборудования, возможно ли использовать электростанцию для работы с данным прибором.
Когда в электростанции заканчивается бензин, двигатель начинает работать с перебоями. Поэтому следует использовать источник бесперебойного питания (UPS), который используется с компьютерами для избежания потери данных при отключении электричества.
Принцип работы и устройство бензогенератора: электрическая схема
Многие люди используют в работе и повседневной жизни бензиновый генератор электроэнергии. Рынок сегодня насыщен подобными устройствами, и чтобы определиться с выбором, необходимо иметь представление, что это и для чего нужно.
Бензиновый генератор — это система автономного энергоснабжения, использующее в качестве потребляемого топлива — бензин.
Классификация бензиновых генераторов.
Бензиновые электростанции могут классифицироваться по ряду критериев. Каждый электрогенератор подготовлен к работе в определенных условиях и при определенных нагрузках.
- Профессиональные и бытовые;
- Переносные и стационарные;
- Двухтактные и четырехтактные;
- Однофазные и трехфазные;
- По мощности: до 4 кВт, до 15 кВт, до 30 кВт.
Профессиональные и бытовые бензогенераторы.
Бытовые генераторы идеально подойдут для частных домов или длительного выезда на природу. Использование профессиональных агрегатов необходимо на предприятиях, для подключения сложных инструментов.
Переносные и стационарные модели.
Переносные модели имеют небольшую мощность (до 5 кВА), вес и габариты, позволяющие переносить их на другое место.
Двухтактные и четырехтактные миниэлектростанции.
Двухтактные устанавливаются на маломощных бензиновых агрегатах, мощность которых не превышает 1 кВт. Во всех остальных случаях устанавливается четырехтактный двигатель.
Однофазные и трехфазные бензиновые электрогенераторы.
Большинству частных потребителей можно ограничиться однофазным электроагрегатом. Трехфазный значительно дороже, и не факт, что его функциональность когда-то будет востребована. При этом по большинству бытовых электрических сетей идет именно однофазный ток.
По мощности: до 4 кВт, до 15 кВт, до 30 кВт.
- Домашние электростанции. Мощность не превышает 4 кВт. Этого хватает для обеспечения электроэнергией частного дома, склада либо небольшого цеха. Бензогенераторы данного типа не предназначены для круглосуточного функционирования. Максимальный срок безостановочной работы – 4 часа. Затем системе необходимо дать время для охлаждения, после чего запускать снова.
- Промышленные БГУ. Имеют мощность до 15 кВт. Подходит для торговых организаций и стройплощадок. Усовершенствованная конструкция продляет срок безостановочного функционирования генератора до 10 часов. От дизельных генераторов этого же класса БГУ отличают меньший вес и габариты.
- Бензиновые электростанции мощностью до 30 кВт используются чаще всего для электроснабжения офисных зданий либо больших складов. Эти устройства устанавливаются стационарно, в заранее подготовленных помещениях.
Устройство бензогенератора.
Устройство бензогенератора сходно с устройством дизельных агрегатов.
Ключевым узлом агрегата является двигатель.
Могут использоваться два типа двигателей:
- Двухтактные. Устанавливаются на маломощные агрегаты для непродолжительной эксплуатации.
- Четырехтактные. Обладают повышенным запасом прочности. Срок бесперебойной работы – 5-7 часов. Моторесурс – 3-4 тысячи моточасов.
Двигатель комплектуется различными системами. Одна из них отвечает за подачу топлива, другая – за шумоподавление, третья – за подачу смазки.В комплектацию также входит выхлопная труба.
Вырабатываемая мощность двигателя определяет тип используемого генератора переменного тока – однофазный либо трехфазный.
Если планируемая нагрузка превышает 5 кВт, электростанция комплектуется трехфазным генератором.
Кроме этого электрогенераторы могут быть асинхронными и синхронными. Некоторые бюджетные модели оснащаются асинхронными генераторами, обладающими несложной конструкцией.
Синхронные генераторы способны переносить трехкратные скачки напряжения.
Качественная и безошибочная работа ключевых внутренних узлов электроагрегата контролируется при помощи контрольно-измерительных приборов.
Схема бензинового генератора показывает расположение всех узлов электрической установки, и их влияние на работу агрегата. Рамный каркас конструкции связывает все узлы в единый рабочий комплекс.
Принцип работы бензинового генератора.
Для того чтобы качественно и своевременно обслуживать прибор и выявлять возможные неполадки, необходимо иметь представление, как работает электрогенератор.
Принцип работы бензинового генератора заключается в следующем.
- В топливный резервуар электростанции заливается бензин.
- При запуске установки топливо по бензопроводу попадает в двигатель.
- В процессе транспортировки бензин фильтруется от механических примесей.
- После этого топливный насос закачивает бензин в карбюратор.
- В карбюраторе нужный объем бензина размешивается до получения однородной массы. Далее подается очищенный кислород. После достижения нужной горючести, топливо поступает в цилиндры двигателя.
- Запускается двигатель. Свеча зажигания посылает искру, которая воспламеняет топливную смесь. При сгорании появляется газ, который заставляет двигаться коленчатый вал, а также поршневую систему. Далее вращательный момент передается ротору, превращающему механическую энергию в электрическую.
- При вращении ротора создаются магнитные колебания, что является основой для электромагнитного поля.
- В результате появляется электрический ток.
Мощность бензогенератора определяется количеством витков обмотки статора. Как правило, мощность бензиновых миниэлектростанций не превышает 12 кВт.
Как подключить бензогенератор к сети дома схема
Как подключить бензогенератор
Использование генератора электроэнергии в доме может производиться 2 путями: через подключение электроприборов непосредственно в розетку агрегата через удлинитель и через интеграцию генератора в общую электросеть помещения. Если первый способ годится для нечастого и кратковременного пользования (например, на даче или на природе), то второй способ используется при длительных перебоях с электричеством или при его полном отсутствии на объекте. В этой статье речь пойдет о генераторах как об основном или резервном источнике электропитания в загородном доме или в любом другом здании (в магазине, цехе, на производственных объектах) и об их правильном подключении.
Если вам нужны дизельные генераторы 200 квт рекомендуем посмотреть на сайте ru.mcferdi.com, очень качественные, надежные генераторы
Перед тем, как подключать электростанцию к домовой сети, нужно решить несколько задач:
Понять, насколько необходимо резервное питание. Оценить, насколько критично будет отключение электричества или требуется постоянное питание (например, если в доме запущен сервер или просто дорогая техника)
Определить место для агрегата с учетом безопасной эксплуатации и близкого расстояния к точке подсоединения.
Просчитать необходимую мощность для всех электроприборов в доме, которые могут использоваться. Также необходимо учесть возможные потери на линии и оставить небольшой запас мощности (20–30%).
Определиться с выбором использования автоматики или ручного управления.
Использование автоматических систем управления и защиты выйдет дороже за счет себестоимости и необходимости дополнительных мер защиты проводки от сильных скачков напряжения при переключении с общей сети на генератор и наоборот. Более щадящей мерой будет использование ручного управления, когда вы самостоятельно производите переключение.
При подключении генератора производится работа с 3 сетями:
общая сеть, через которую дом получает электричество;
внутренняя сеть дома;
Почему нельзя подключать генератор через розетку
Подключение через разъем – достаточно простая процедура, однако не стоит отдавать ей предпочтение при подсоединении генератора к общедомовой электросети, так как это влечет множество проблем:
Возможность перегрузки в точке подсоединения – так как вся нагрузка полностью ложится только на одну розетку, это чревато быстрым перегревом, оплавкой и даже ее возгоранием.
Отсутствие в электролинии отдельного автомата, который отвечал бы за безопасность и аварийное отключение при возникновении опасных ситуаций.
Невнимательность человека – при включении агрегата иногда забывают отключить автомат ввода. Это влечет за собой перегрузку и активацию блока защиты.
Возможность поломки генератора при пуске электротока по линии и его попадании на контакты работающего агрегата. В этом случае может потребоваться серьезный ремонт или полная замена электростанции.
Способы подключения генератора к сети
Существует 3 способа правильного подключения электростанции к домовой сети.
Перекидной (реверсивный) рубильник (ручное управление)
Это прибор, который будет отвечать за безопасное подключение. Преимущества такого типа управления:
Простота конструкции – рубильник оснащен 3 режимами – 1-0-2. 1 – питание от общей сети, 0 – замыкание всех контактов, 2 – питание от генератора.
Простота подсоединения – к верхней части рубильника с левой стороны подключается общая сеть, с правой – генератор. Снизу провода-перемычки формируют ввод в общедомовую линию. Для безопасности системы рекомендуется добавить автоматы к каждой линии. Они обеспечивают отключение системы при перегрузках и других критичных ситуациях.
Доступная цена – рубильники такого типа стоят в пределах 500 р.
Запуск генератора с перекидным рубильником:
отключение автомата ввода,
рубильник устанавливается в положение 2,
отключение автомата нагрузки,
запуск генератора (прогрев агрегата перед полноценной работой выполняется в течение 4 минут),
на рубильник подается ток,
включение автомата нагрузки.
Заземление генератора в этом случае обязательно. Для этих целей в землю вколачивают металлический прут длиной от 2 м и соединяют его через медный провод к соответствующей клемме на генераторе.
Данный вариант также применяется для подключения к трехфазной сети однофазного генератора. На схеме ниже показано, как правильно произвести подсоединение агрегата к электролинии.
Полуавтоматический блок АВР (автоматики ввода резерва) на контакторах
В данном случае используется самый простой вариант блока АВР с приоритетом на магистральную сеть.
Для общей системы вам потребуется:
Автоматы АВР на полупроводниках (2 шт.), которые соединяются между собой;
Кабель сечением не меньше 4 мм 2 . Длина кабеля определяется удаленностью конструкции от генератора;
Автоматы, отключающие линии;
Металлический ящик – размеры зависят от габаритов устанавливаемого электрооборудования и места монтажа.
В ящике собираются все элементы системы: устанавливаются автоматы, к ним подключаются блоки АВР, после выполняется проверка правильности подключения.
- Подсоединение элементов цепи наглядно показано на схеме:
3. Заземление генератора.
При отсутствии электропитания в общей сети запускается генератор и автоматически произойдет переключение линии благодаря замыканию контактора.
При появлении тока в общей сети переключение с генератора на централизованное электроснабжение произойдет автоматически. При этом вам следует лишь заглушить генератор ради экономии топлива.
Для удобства управления и защиты системы можно дополнительно установить реле, которое будет выключать агрегат при активации общей сети, и включать его с задержкой в 4 минуты, чтобы генератор успел прогреться.
Блок автоматического управления
Такой тип подключения считается самым лучшим на сегодняшний день. Подробная схема подключения показана на картинке ниже.
Для этого типа подключения необходимо подобрать генератор с автозапуском для построения полностью автоматизированной системы. А чтобы избежать проблем с частым доливом топлива, можно дополнительно приобрести бензобак большого объема.
Принцип работы системы:
При прекращении подачи тока в общей сети блок быстро реагирует на изменения и запускает сигнал АВР, который, в свою очередь, активизирует генератор. После запуска агрегату дается 4 минуты для прогрева, после этого электричество поступает в общедомовую сеть.
После возобновления подачи тока от общей магистрали генератор автоматически выключается.
Основные правила использования генератора в доме
Соблюдение этих правил позволит избежать опасных ситуаций и выхода из строя оборудования.
Перед тем как подключить бензиновый генератор к сети, обеспечьте хорошую вентиляцию в помещении, где он будет установлен. Особенно это касается моделей с воздушным охлаждением.
Помещение должно быть отапливаемым и защищенным от сырости и влаги.
Не размещайте агрегат вблизи отопительных приборов и других источников тепла, в том числе прямых солнечных лучей.
Перед дозаправкой генератор следует выключить.
Если вы разлили топливо вблизи электростанции, тщательно вытрите его.
После соединения контактов не должно оставаться никаких оголенных проводов.
При установке обязательно заземляйте агрегат.
Во время работы генератора соблюдайте технику безопасности: не подходите к агрегату в одежде со свободно висящими краями, с распущенными волосами, так как вентилятор может затянуть их внутрь.
- Перед каждым включением генератора необходимо обязательно проверять исправность всех механизмов и узлов системы, а при обнаружении неисправности своевременно ремонтировать или заменять отработавшие элементы.
Как подключить генератор к дому? Казалось бы, что может быть проще, завел генератор, подключил к дому и все, живем как прежде ))). Но не все так просто, как кажется с первого взгляда. В этой статье хотелось бы рассказать о том, как наш народ, желая немного сэкономить на материалах, работе квалифицированных специалистов, умудряется подключать бензиновые и дизельные генераторы.
Итак, недавно побывав в «гостях» у одного из товарищей который, по его словам, работал много лет судовым электриком и знает об электричестве все, в том числе и закон Ома 🙂 …
Так вот, причиной визита стало то, что бензиновый генератор отказывается выдавать жизненно важные 220 В.
При первом же осмотре «клиента», то есть, генератора прилегающего электрохозяйства, стала понятна причина отказа – вышел из строя блок автоматического регулятора напряжения. Немного поговорив с хозяином бензинового генератора и задав пару наводящих вопросов, понял причину выхода из строя миниэлектростанции. Все оказалось достаточно просто.
Во время отключения основного электричества, заказчик подключал генератор в ближайшую розетку, при этом отключая вводной автомат, в итоге на весь дом подавалось электричество от генератора. При появлении электричества в основной сети генератор отключался, переноска отключалась от генератора, и включался вводной автомат.
На самом деле способов подключения генератора к существующей сети дома не так уж и много, и способ, описанный выше, не годится, так как это опасно как для людей, так и для генератора. Всегда существует вероятность того, что человек ошибется в последовательности включения-отключения, что, впрочем, и произошло на данном объекте. После появления электричества наш «Судовой Электрик» заглушив генератор, забыл вынуть розетку из него. Результат ошибки уже описан выше.
Итак, как же правильно подключить генератор? Способов подключения несколько.
1) Перекидной рубильник
Самый простой это использовать перекидной рубильник в три положения 1-0-2, то есть, в первом положении объект (дом, офис) будет подключен к промышленной сети, в положении «0» нагрузка отключается. При переключении в положение «2» нагрузка подключена к резервному источнику электричества — генератору.
Чтобы было понятнее как и что куда подключать вот вам картинка.
2) Простейший блок АВР на контакторах
Второй способ немного сложнее, но тоже имеет право на жизнь. В данном случае используем простейший АВР с приоритетом основного ввода. Алгоритм работы устройства достаточно прост:
При пропадании городского электричества подходите к генератору и заводите его, если в основной сети нет электричества, замкнется контактор генератора. При появлении электричества в основной сети контактор генератора размыкается и включается контактор сети.
Путем нехитрых манипуляций можем слегка усовершенствовать этот «полуАВР», и тогда при появлении электричества в городской сети, дополнительное реле будет глушить генератор.
Также можно установить дополнительно реле времени, и тогда, при запуске генератора нагрузка будет включена через определенное время, за которое генератор выйдет на свой нормальный режим работы, то есть, он (генератор) прогреется, обороты стабилизируются.
Данный тип подключения бензинового или дизельного генератора к существующему объекту позволяет подключить генератор, как с ручным запуском, так и генераторы оборудованные электростартером.
3) Блок автоматического управления генератором
Третий способ подключения бензинового, дизельного или газового генератора к дому. Для переключения нагрузки с города на генератор рекомендуем использовать полноценный АВР — автоматическое включение резервного питания.
Этот способ, пожалуй, самый оптимальный. В данном случае блок автоматики (АВР) контролирует наличие напряжения в основной сети и в случае пропадания напряжения автоматика (АВР) самостоятельно запускает бензиновый, дизельный или газовый генератор, прогревает и переключает нагрузку на миниэлектростанцию. При появлении электричества в основной сети происходит переключение нагрузки с генератора с последующей остановкой бензинового или дизельного генератора.
Единственный минус, в данном случае, это стоимость устройства запуска генератора (АВР) и стоимость самих монтажных работ, так как для коммутации генератора и системы АВР необходимы знания и навыки по подключению генератора и автоматики. Также необходимо учесть, что для работы генераторной установки в автоматическом режиме, миниэлектростанция должна быть оборудована электростартером.
Схема подключения контроллера АВР «Контакт ЕС»
Так как приходиться регулярно заниматься инсталляцией генераторов и автоматики, в частности АВР «Портофранко», хотелось бы дать пару рекомендаций по выбору автоматики для управления генератором.
Если у Вас в качестве резервного(аварийного) источника электричества установлен простой бензиновый или дизельный генератор и у вас нет особенных требований к генератору, точнее к автоматике которая должна управлять этим самым генератором, смело берите АВР «Портофранко» серии ЛЕ (эконом-версия). Несмотря на свой ограниченный, в плане настроек-регулировок, функционал, автоматика справляется со своей задачей на все 100%. Проверено лично, и не один раз ))). И, к тому же, сэкономите немного денег, что тоже немаловажно…
Если же у вас требования к автоматике более жесткие и вам в дальнейшем потребуется дополнить вашу энергосистему дома, офиса, предприятия какими-то дополнительными устройствами, то тут, конечно же, лучше обратить внимание на АВР серии СЕ или МЕ.
К примеру, недавно пришлось выполнить не совсем стандартную задачу по обеспечению резервным электричеством одного домика, общей площадью под 600 м². Так вот, благодаря гибкости данных АВР-ов, задачу выполнили на ура ))).
Еще одной отличительной особенностью АВР «Портофранко» версий СЕ и МЕ является наличие порта RS-485, через который, используя специальный софт и переходник-адаптер, можно дистанционно посредством ПК следить и управлять работой АВРа и генератора. Адаптер и необходимый софт можно приобрести у производителя АВР.
Как подключить однофазный генератор к трехфазной сети дома
Способов подключения существует несколько. Самый первый – это подключение генератора к выделенной для этих целей группе потребителей.
Другой способ – это использование перекидного рубильника, переключателя на три положения 1-0-2, то есть, в положении «1» нагрузка запитана от промышленной (городской) сети, Среднее положение рубильника «0» — нагрузка отключена, в положение «2» — нагрузка (дом) подключена к резервному источнику электричества, в данном случае это бензиновый, дизельный или газовый генератор.
Не особо вдаваясь в конструкцию устройств, отметим лишь, что устроен перекидной рубильник или трехпозиционный переключатель относительно просто и состоит из неподвижных контактов, к которым подключаются провода (нагрузка-город-генератор) и подвижных контактов, которые осуществляют коммутацию нагрузки с города на генератор и обратно.
В случае переключения трехфазной нагрузки город-нагрузка (потребитель) коммутируются три фазы, то есть, на рубильник приходит три городских фазы А-В-С, на нагрузку уходят те же самые три фазы. В случае переключения нагрузки на генератор нам необходимо сделать так, чтобы на все три фазы поступало электричество.
Для этого необходимо немного модернизировать наш переключатель-рубильник, а именно, сделать перемычку между фазами А-В-С со стороны подключения генератора. Теперь, в случае переключения нагрузки на генератор, на все три фазы будет поступать электричество.
Следующий способ подключения нагрузки к однофазному генератору, это применение контакторов. В данном случае применяют два контактора, один для питания нагрузки от городской электросети, второй контактор необходим для подключения нагрузки к резервному источнику электричества – бензиновому, дизельному или газовому генератору. Этот метод приемлем в случае использования АВР.
При питании нагрузки от города все три фазы, подключенные к контактору, идут на нагрузку. При подключении генератора, как и в случае с перекидным рубильником, на клеммах контактора в месте подключения провода от генератора нам необходимо установить перемычку между фазами А-В-С.
Что лучше использовать для переключения? Перекидной рубильник или контакторы?
Если вы не собираетесь использовать систему автоматического управления генераторами, то необходимо установить перекидной рубильник, но обязательно трехпозиционный 1-0-2.
В случае же применения блока автоматического запуска генератором – АВР, без использования контакторов вам не обойтись.
Внимание. При использовании однофазного генератора следует учесть, что если есть трехфазные приборы, их необходимо отключить от питания на время работы от генератора, так как это может привести к выходу из строя данных приборов.
Чего не следует делать.
Нельзя подключать генератор методом розетка-розетка…
Нельзя подключать генератор к электросети дома используя два автомата — один вводной, который от города, второй от генератора. Обязательно когда-нибудь ошибетесь и включите не тот автомат… Что будет дальше не станем рассказывать, но в любом случае ничего хорошего…
В любом случае, если Вы намерены использовать генератор в качестве резервного источника электричества для дома, офиса, производства, рекомендуем обратиться к специалистам, которые произведут монтаж генератора быстрее и качественнее.
Подключение генератора к сети загородного дома
Электроэнергия, хотя и вырабатывается на крупных электростанциях, которые работают без остановки, но, тем не менее, иногда пропадает. Погода вносит свои коррективы во многие процессы. В том числе и в электроснабжение. Причем для поселений вне городской черты они наиболее чувствительны. И когда на даче или где-нибудь в деревне с приходом непогоды пропадает свет, цивилизация вдруг исчезает. Но чтобы не испытывать проблем с отключениями электричества, нужен резервный генератор. О его подключении и расскажем далее.
Выбор наилучшего варианта схемы
Электросеть 220 В поступает в современные частные дома и дачи через счетчик электроэнергии, расположенный вне помещения. Но главный распределительный щит обычно устанавливается в помещении. Электрогенератор также располагается либо в доме, либо в подсобном помещении. По этой причине надо в первую очередь выбрать оптимальный вариант его подключения:
- По месту установки электросчетчика.
- По месту расположения электрического щита.
В каждом из этих вариантов надо использовать такую схему, в которой питающие напряжения электросети и генератора надежно разделяются и ни в коем случае не соединяются встречно. Вариантов такой схемы может быть несколько. Современные системы автоматического управления выпускаются для решения, в том числе и управления генераторами. Они обеспечивают после пропадания напряжения их автоматический запуск и безопасное присоединение к домашней электросети.
Схемы с АВР
Под управлением микроконтроллера по заданной программе коммутаторы автоматически выполняют все необходимые переключения. Как результат — не надо задумываться о необходимости что-либо включать-выключать вручную и делать это. Автоматика все сделает за человека. Но за деньги. Причем из всех вариантов сумма получится самой большой. Автоматика — дорогое удовольствие. Кроме того, подобная схема легко реализуема только одновременно с построением домашней электросети.
Если решено применить полностью автоматическое переключение домашней сети на питание от электрогенератора, потребуется блок автоматического ввода резерва (АВР). Он должен настраиваться на приоритет основной электросети. Пример такого блока показан далее на изображении.
Практическая реализация такой схемы тем проще, чем короче провода и кабели, соединяющие ее элементы. Поэтому рекомендуется продумать размещение элементов схемы заранее. При этом не забыть о заземлении, для которого также предусматривается определенное место. В руководстве по эксплуатации обязательно изложены рекомендации о том, как делается заземление генератора. Полная автоматизация перехода на электропитание от генератора неразрывно связана с его конструкцией.
Такая мини-электростанция конструктивно делается по аналогии со стартером автомобиля. В ней обязательно присутствует аккумулятор для питания электродвигателя, вращающего двигатель внутреннего сгорания. Если применена мини-электростанция, которая запускается только вручную, эта операция — единственная, которую необходимо выполнить после отключения основной питающей электросети. Также вручную придется отключить электростанцию и после восстановления централизованного электроснабжения.
Переключение вручную как минимум дешевле…
Когда электросеть уже существует и к ней надо присоединять автоматику для управления электрогенератором, возникают трудности, которые с трудом преодолеваются. Поэтому при доработке домашней электросети лучше выбрать схему с ручным переключением. Для этого в уже эксплуатируемом электрическом щите используется вариант с установкой перекидного рубильника. Лучше всего применить компактные модели этого коммутатора. Некоторые из них показаны далее на изображении.
Но их можно использовать только в том случае, когда к электрощиту либо уже были проложены все необходимые для этого кабели, либо их можно проложить в уже сложившихся условиях. И, конечно же, на дин-рейке необходимо место для размещения рубильника. А еще уточним, что такой рубильник относится к дорогим коммутаторам. Поэтому, исходя из цен, вместо него можно порекомендовать рубильник классической конструкции, показанный на изображении далее.
Этот коммутатор устанавливается между электросчетчиком и распределительным щитом. Где именно — определяется в каждом конкретном случае. Но самое главное при выборе коммутационного оборудования то, что не имеет смысла вкладываться в дорогие комплектующие изделия. Резервное электропитание работает случайным образом и наиболее часто кратковременно. Резервные коммутаторы совершают незначительное число переключений. То есть они изнашиваются минимально. Поэтому простейший вариант — это схема с перекидным рубильником.
Переключатели обязательны к использованию
Наличие отдельного коммутатора, несмотря на то, что он будет нечасто использоваться, сделает схему электроснабжения дома безопасной как для пользователей, так и для оборудования, присоединенного к электропитанию. Хотя самое простое решение — это обычная розетка, через которую можно запитать всю домашнюю сеть. Тем более что подключение к электрогенераторам тоже выполняется через розетки, установленные на их корпусе. Однако все зависит от мощности электрогенератора.
Если его мощность более 2–3 кВт, обычная розетка может перегреться и прийти в негодность. Но и более мощные контакты решат проблему лишь отчасти. Для оптимальной схемы необходимо аварийное отключение нагрузки. Также будет велика вероятность того, что при подаче сетевого напряжения получится встречное соединение генератора и питающей электросети. А это может привести к порче электрогенератора.
Перекидной рубильник, хоть и не автоматический, в одном из трех своих положений перенаправит потребителей на электрогенератор. Причем никогда не получится встречного соединения, поскольку это физически невозможно в этом рубильнике. В среднем положении домашняя электросеть получается обесточенной. Даже при работающем электрогенераторе и наличии напряжения в электросети можно без проблем переключаться между этими двумя источниками электроэнергии.
Синий провод сети и генератора (см. изображение выше) надо пропустить через контакты автоматических выключателей. Для сети и для электрогенератора нужен свой отдельный автомат-выключатель. В схеме подключения генератора обязательно должен присутствовать заземляющий контур или заземление из трубы или стального профиля длиной от 2 метров. Хороший вариант заземления — труба скважины для воды.
Если дом присоединен к трехфазной сети, а электрогенератор однофазный, рекомендуется схема, показанная далее.
В заключение дадим собственные рекомендации по выбору схемы подключения генератора. Еще раз напомним, что начинать строить такую схему надо со статистики отключений электроэнергии в конкретном месте. Ручное переключение на электрогенератор дешевле. Также более дешевым вариантом является использование источников бесперебойного питания для конкретного оборудования. Электрогенератор наиболее эффективен при отоплении электричеством, когда отключения регулярны и продолжительны.
{SOURCE}
Доработка вашего генератора
Система резервного энергоснабжения загородного дома. Подключение генератора с автозапуском.
Если в вашем загородном доме электроэнергия поступает с перебоями то в качестве резервного источника электроэнергии можно использовать бензиновый, дизельный или газовый генератор электроэнергии.
Включать генераторпараллельно городской сети напрямую нельзя, это приведет к серьезным повреждениям генератора или другим печальным последствиям. Для этих целей существуют щиты автоматического или ручного переключения на резерв АВР, так называемые сильноточные коммутаторы нагрузки или еще как их называют — Automatic Transfer Switch или сокращенно ATS.
В щит АВР приходят два силовых кабеля, один от основной сети, другой от резервной сети а отходит к потребителям всего один силовой кабель.
В зависимости от алгоритма щит АВР подключает потребителей либо к основной сети либо к альтернативному резервному источнику напряжения.
Как работает автоматический запуск
Схема работы щита АВР представлена на рисунке 1.
И вроде все хорошо, но есть одна проблема – запуск генератора. Обычно генератор стоит на улице или в подвале и до него еще нужно дойти. А если дело происходит поздно вечером придется заводить его в полной темноте.
А можно сделать так чтобы никуда не ходить а генератор заводился сам, автоматически?
ДА, ЛЕГКО!
Давайте автоматизируем процесс запуска генератора!
Необходимо Блок Автоматического Запуска Генератора БАЗГ-1 который сам, при необходимости запустит двигатель генератора. Блок автоматического запуска имеет небольшие габаритные размеры и может устанавливаться непосредственно на генератор или в щит АВР (автоматический ввод резерва).
Небольшая доработка Вашего генератора и вуаля! У появляется функция автоматического запуска! Теперь подключение генератора с автозапуском к вашей электросети выглядит простой процедурой.
Для бензинового и газового генератора в комплекте идет привод управления дроссельной заслонкой, необходимый для уверенного запуска двигателя.
Поскольку без управления дроссельной заслонкой генератора («подсосом») запуск будет затруднен, а в некоторых случаях вообще невозможен, перед запуском блок автозапуска автоматически закроет дроссельную заслонку а по мере прогрева двигателя откроет ее.
Механизм привода дроссельной заслонкой (рис 3 ) можно устанавливать на любой тип карбюраторов.
Примечание: для газового генератора REG ( Russian Engineering Group ) привод заслонки не требуется.
Технические характеристики блока автоматического запуска БАЗГ-1:
- Напряжение питания — 12V DC
- Количество попыток запуска — 5
- Время вращения стартера — 5 секунд
- Пауза между попытками — 15 секунд
- Импульс на открытие заслонки — 4 секунды
- Импульс на закрытие заслонки — 4 секунды
- Охлаждение генератора — 30 секунд
Обычно этих настроек достаточно для запуска генератора.
Если Вам нужны другие временные установки то мы можем их изменить по предварительному заказу.
Теперь предположим что генератор простоял без работы несколько дней. Аккумулятор генератора разрядится и в нужный момент может подвести. Как быть в этой ситуации? Ответ прост — поддерживать аккумулятор в боевой готовности с помощью зарядного устройства! Причем нам понадобится автоматическое зарядное устройство с функцией сохранения заряда, то есть аккумулятор заряжается до определенного уровня и зарядное устройство отключается. При снижении заряда ниже определенного уровня зарядное устройство снова включается и процесс заряда аккумулятора снова повторяется. Эта функция присутствует в недорогом зарядном устройстве «СОНАР».
Подведем итог:
Какие комплектующие необходимы для полной автоматизации запуска?
Для построения полнофункциональной системы автоматического резервного энергоснабжения загородного дома вам понадобится:
- Щит автоматического переключения на резерв АВР
- Блок автоматического запуска генератора БАЗГ
- Зарядное устройство СОНАР
- Бытовой генератор напряжения с электростартером.
Расширение системы. Дополнительные опции
Можно добавить в систему GSM модуль и получить возможность дистанционно, с помощью коротких сообщений SMS контролировать параметры системы а также запускать/останавливать генератор.
Можно добавить в систему программируемый таймер и у вас появится возможность запускать генератор в определенное время.
Можно добавить в систему счетчик моточасов генератора. Таким образом вы всегда будете знать сколько наработал ваш генератор и не пора ли производить плановое техническое обслуживание.
Можно добавить в систему циклическое реле времени для обеспечения экономичного режима работы. Например 1 час работает, 1 час отдыхает.
Можно добавить в систему электромагнитный клапан для перекрытия подачи топлива в момент простоя генератора.
Допустим понадобилось включить генератор, нажали кнопку — включился, нажали еще раз — выключился.
Можно добавить в систему радиомодуль и вы сможете заводить генератор дистанционно, по радиоканалу.
Добавим в систему термореле и Ваш генератор будет запущен при понижении температуры в доме или повышении температуры в холодильнике. Таким образом можно существенно экономить топливо. Генератор будет обеспечивать электроэнергией котел или холодильник исключительно при необходимости. Пример такой системы представлен на рисунке ниже.
Дистанционный запуск и мониторинг системы по GSM каналу.
Тестовый запуск генератора по расписанию.
Учет времени работы генератора.
Режим работа-отдых.
Перекрытие топливной магистрали.
Дистанционный запуск генератора с кнопки, выключатели или тумблера.
Дистанционный автоматический запуск генератора с брелка.
Термореле, термостатирование.
Не стоит забывать, что блок автоматического запуска генератора можно установить только на генераторы оборудованными электростартером.
Блок автоматического запуска генератора БАЗГ-1 был успешно установлен на генераторах:
- HUTER
- PRORAB
- ELITECH
- Eisemann
- ВЕПРЬ
- БРИГАДИР
- ТЕХЭНЕРГО
- HYUNDAI
- Hitachi
- TIGER
- GREEN POWER
- GREEN FIELD
- NILSON
- HONDA
- ДАЧНИК
- BRIGGS & STRATTON
- Wolsh
- Elemax
- Robin-Subaru
- Sturm!
- Aiken
- Fubag
- SKAT
Установка блока автозапуска на генератор несложная процедура, но она должна осуществляться специалистом (электриком). Процедура установки похожа на установку автосигнализации в автомобиль.
Возврат к списку >>
особенности ремонта своими руками, основной принцип работы устройства и эксплуатации
Мощный бензогенератор — оптимальный вариант электроснабжения оборудования, если вы выехали за город или организовали выездную вечеринку, работаете на строительном объекте либо находитесь далеко от центральной системы подачи электроэнергии. Техническое устройство бензогенератора имеет множество важных механизмов и рабочих блоков. Но как любой прибор, он может выйти из строя, поэтому нужно иметь представление о принципе ремонта бензогенераторов.
Разновидности и правильный выбор привода
Существуют два основных типа генераторов: промышленный и бытовой. Они имеют различную мощность, габариты, затраты топлива и так далее. Принцип действия при этом идентичный. Основные различия:
- Бытовая модель не имеет большого ресурса, поэтому предназначена только для краткосрочного использования. Мощность не превышает 2−3 кВт. Вырабатывают однофазный ток 220 В.
- Промышленные модели предназначены для бесперебойной работы в течение длительного времени. Мощность может быть невероятно большой, в зависимости от обслуживаемой системы. Вырабатывают трёхфазный ток 380 В.
При покупке выбор должен основываться на том, в каких условиях будет эксплуатироваться оборудование. Важно понимать, что самодельный бензогенератор не так эффективен, как модель от производителя.
Главный механизм — бензиновый двигатель, на нем основаны принципы работы бензогенератора. В настоящее время используются двухтактные и четырёхтактные варианты. Первый тип имеет простую конструкцию, легче и дешевле, но при этом имеет минимальный ресурс и не предназначен для длительного использования, хотя для домашних целей он обычно подходит. Но чаще выбирают четырехтактные модели, они выполняют свое предназначение в полном объеме.
Предназначение генератора и его особенности
Генератор — это основной рабочий узел оборудования, который вырабатывает электрический ток. При движении ротора происходит возбуждение тока на неподвижном статоре, за счет переменного магнитного поля. На самом деле представленные аспекты физической силы и теории не имеют большого значения. Чтобы ликвидировать неисправность, достаточно сменить некоторые детали, так как их нельзя ремонтировать, а только заменять. Может понадобиться электросхема бензогенератора, где можно будет более основательно изучить основные аспекты. Имеются различия по мощности:
- Маломощные электростанции с показателями до 2 кВт. Используются для кратковременного запуска. Чаще всего обслуживают небольшие холодильники или для освещения территории несколькими лампочками.
- Средний тип моделей с мощностью до 6,5 кВт. Оборудование используется для обеспечения электрическим током небольшие дома, гаражи или магазины. Это профессиональные системы, работающие исключительно на бензиновых двигателях.
- Мощный электрогенератор до 15 кВт. Уникальные системы, где могут использоваться не только бензиновый двигатель, но и дизель, все зависит от компании производителя. Все модели только трехфазные и применяются для электроснабжения огромных зданий, предприятий или промышленных объектов.
Все типы оборудования проходят специальные тесты на проверку соответствия требованиям безопасности и техническим нормам. Это не только защита от короткого замыкания, пожаробезопасность, но и ликвидация повышенных показателей шумов, экологичность и так далее. Работая на бензине, двигатель вырабатывает газы, которые должны утилизироваться. Все это в совокупности имеет немалое значение. Также не стоит забывать, что любая поломка может стать явной причиной этих нарушений.
У потребителей имеется возможность заменить генератор или двигатель в любом сегменте, но делать это нужно только заранее продумав все дальнейшие технические показатели. То есть можно из двух бензогенераторов сделать один, если какие-то детали повреждены и непригодны к дальнейшей эксплуатации.
Ремонт бензиновых двигателей
Бензиновые двигатели устанавливаются на генераторы чаще всего, конечно же, есть модели, работающие на дизельном топливе, на газе, но они менее популярны. Разнообразные поломки возникают в ходе эксплуатации, и иногда их ликвидация требует безотлагательного вмешательства. Только таким образом, удастся добиться требуемого показателя. Рассматривая основные типы поломок и дефектов, все сводится к тому, что они всегда идентичные. Конструкция моторов одинаковая, и отличаются они только по техническим характеристикам, поэтому провести ликвидацию поломок двигателя будет намного легче чем генератора. Основные неисправности:
- Двигатель не запускается. Отсутствует топливо или искра на свечах, нарушена целостность кривошипно-шатунного механизма. Есть дефекты или посторонние элементы, препятствующие этому.
- Работа оборудования неровная с перебоями. Топливо имеет посторонние примеси, нарушена работа свечей зажигания.
- Поломки, связанные с кривошипно-шатунным механизмом. Чаще всего это приводит к тому что подача топлива есть, как и искра, но двигатель не запускается. Может отсутствовать компрессия вследствие износа колец.
- Иногда на китайских моделях обрываются поршня, так как используется низкосортный металл.
- Некачественное масло может стать также причиной засорения каналов, что приведет к перегреву мотора.
- Засорение карбюратора происходит по причине некачественного топлива, попадания посторонних примесей или длительного неиспользования оборудования.
Технические вопросы решаются только через специализированные станции обслуживания. Если есть гарантия и сервис в городе, то выбор в полной мере очевиден. В данной ситуации разбирать ничего нельзя, так как специалисты откажутся от бесплатного ремонта, из-за нарушения целостности конструкции. Поэтому нужно изначально проверить срок гарантии.
Оборудование имеет множество различных дополнительных деталей и механизмов, которые выполняют свои технические задачи. Установленный инверторный глушитель — это часть шумоизоляции. При использовании бензогенератора, выделяется большое количество шума, поэтому его нужно минимизировать. Разработчики всеми силами пытаются создавать более совершенные системы данных устройств.
ТО генераторов и электрических систем
Касаясь представленного аспекта проведения ремонтных работ, рекомендуется обращаться в специализированные станции обслуживания. Вы можете купить новый генератор для бензогенератора и установить его самостоятельно, в остальном без помощи специалистов не обойтись. Основные типы поломок и методы ликвидации:
- Двигатель не запускается. Рекомендуется проверить наличие искры на свече, работоспособность электростартера, наличие топлива.
- Генератор не выдает электрический ток либо работает с перебоями. Нарушение в целостности электрической схемы, повреждена обмотка, двигатель не передает крутящий момент.
- Появился запах гари. Генератор сгорел, возникло короткое замыкание.
При любом типе нарушений рекомендуется незамедлительно заглушить двигатель. Далее, проводится внешний осмотр или вызывается мастер. Второй вариант будет более рациональным и эффективным.
Для того чтобы запустить двигатель, требуется стартер. Чаще всего используется ручной, но более мощные модели комплектуются электростартерами по типу автомобильных. Ремонт и обслуживание данных технических элементов проводится полной заменой. Проблема в том, что большая часть из них неремонтопригодная. Стандартная разборка может привести к тому, что вы просто не сможете собрать все обратно.
Главное условие проведения ремонтных работ — это обращаться в первую очередь к техническим пособиям. Это позволит заранее разобраться со всеми поломками и другими ограничениями. Ваша рука станет главным помощником в проведении ремонта и технического обслуживания. Проверка электронных блоков проводится с помощью специализированных стендов. То есть это компьютерное программное обеспечение, которое позволит выявить все недостатки оборудования на ранних этапах.
Основные правила обслуживания
В независимости от типа или бренда, все бензиновые генераторы обслуживаются идентично. Для удобства потребителей к технике прилагаются специальные пособия и рекомендации, чтобы не забывать о плановом проведении ТО. Начинать нужно всегда с внешнего осмотра, чтобы не пропустить повреждения внешних деталей. Конечно же, если у вас китайский инверторный генератор, то могут возникнуть проблемы с поиском комплектующих. Основные типы работ, входящие в ТО:
- Осмотр должен состоять с просмотра всех рабочих элементов.
- Нужно снять воздушный, топливный фильтр и заменить на новый. Срок смены зависит от длительности и регулярности использования оборудования.
- Рекомендуется заменить ремни, свечи.
- Стандартный автономный генератор нуждается в регулярной смене масла.
- На основе представленных аспектов удастся увеличить срок службы техники до максимальных показателей.
- Заменить колесо на мобильной техники, можно без особенных проблем.
Рекомендуется обратить внимание на технику Fubag, это немецкий бренд, выпускающий электрогенераторы нового поколения. Этот вариант сможет в полной мере удовлетворить все индивидуальные пожелания клиентов. Компания выпускает различные типы моделей оборудования, с различными техническими характеристиками. Именно поэтому можно с легкостью подобрать все что нужно без каких-либо ограничений.
Конечно же, чтобы правильно проводить техническое обслуживание и ремонт, нужно знать устройство бензогенератора, тогда можно не только поменять детали, но и собрать его обратно. Сделать это не так уж просто, так как существует большое количество разнообразных нюансов, которые рекомендуется на предварительном этапе изучать.
Хранение бензогенераторов
Любое оборудование требует профессионального ухода. Поэтому рекомендуется придерживаться тех правил, которые предоставляет клиентам производитель. Это очень важные аспекты, которые позволят не только улучшить запуск оборудования, но и увеличить межремонтный период. Основные рекомендации:
- При длительном хранении нужно обязательно слить все топливо с бака. Бензин окисляет детали карбюратора, что может привести к засорению каналов.
- Рекомендуется использовать полиэтилен, чтобы накрыть оборудование при длительном хранение, для защиты от коррозии и попадания влаги.
- Перед хранением лучше всего провести ТО.
- Ни в коем случае нельзя оставлять генератор в разобранном виде на длительное время, так как внутрь могут попасть посторонние элементы.
- Хранить нужно в сухом и прохладном месте.
- Нельзя запускать оборудование при сильном морозе, если оно не предназначено для эксплуатации в таких условиях.
Таким образом, можно защитить не только свои деньги, но и оборудование. В настоящее время компании-производители предоставляют клиентам специальные технические инструкции, в которых подробно рассматриваются все детали.
Электрическая Схема Генератора — tokzamer.ru
Из-за того, что узел питает все электрооборудование в автомобиле, он считается основным элементом в бортовой сети транспортного средства.
Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. Непосредственно сам регулятор конструктивно включает в себя контроллеры, а также исполнительные компоненты.
О выходе из строя данных элементов может сообщить повышенная шумность, но этот же признак свидетельствует и о недостаточной смазки.
Как запустить генератор без АКБ(самовозбуждение,схема+теория)
В зависимости от количества лап крепление генератора называется однолапным или двухлапным.
Вся конструкция защищена металлическим корпусом. Максимальный ток отдачи определяется при частоте вращения ротора в 6 мин
Прежде всего это связано с тем, что при малых диаметpax шкивов клиновой ремень усиленно изнашивается. Для выполнения демонтажа подготовьте стандартный набор инструментов, автомобиль желательно загнать на смотровую яму.
Только при условии, когда прекратится питание лампы, на обмотку возбуждения будет подано напряжение и генератор сможет выйти на рабочий режим.
В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит.
Не горит лампа зарядки АКБ. Как найти причину.
Схема автомобильного генератора ВАЗ 2106:
Вспомогательный выпрямитель включает в себя диоды в пластиковом корпусе формой в виде горошины или цилиндра, а также могут изготавливаться отдельным герметичным блоком, подключаемым к схеме специальными шинами. В принципе при появлении сторонних звуков следует также произвести диагностику состояния контактов.
На каждой половине имеется шесть полюсов, которые изготавливаются методом штамповки.
При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии.
Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства. И все они потребляют электроэнергию, а восполнить заряд помогает генератор, который заряжает аккумуляторную батарею до оптимального уровня.
Далее через монтажный блок поступает на й вывод. Работают при этом параллельно аккумулятор и генератор ГА.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания.
Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т.
ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ.
Классификация
Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства. Стоит заметить, что узлы соединены между собой крепежными элементами, а также целостной рамной конструкцией.
Полностью отвернуть болт крепления регулировочной планки к блоку цилиндров, после чего снизу авто отворачиваем 2 болта крепления нижнего кронштейна к блоку и снимаем генератор, вытащив его из подкапотного пространства.
Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
Поделиться с друзьями: Вам также может быть интересно. Сам рубильник функционирует в трех положениях, каждое из которых отвечает за свой этап работы.
Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Карбюраторные двигатели Схема подключения генератора ВАЗ карбюратор и инжектор зависит от года выпуска автомобиля. Обе половины данной обмотки находятся в противоположных полюсных половинах узла.
Содержание
Эти пульсации можно использовать для диагностики выпрямителя. Данное знание позволит устранить различные неполадки, риск возникновения которых всегда присутствует в процессе эксплуатации. Если крепление осуществляется двумя лапами, то они расположены на обеих крышках, если лапа одна — она находится на передней крышке.
Такими устройствами комплектовались военные машины и автобусы. Отсоединить аккумуляторную батарею. Поликлиновый ремень считается более универсальным, применим при небольших диаметрах ведомого шкива, с его помощью реализуется большее передаточное число. При этом обмотка возбуждения генератора оказывается подключена к цепи питания через переход эмиттер — коллектор VT3. Это позволило обойтись без щеточного узла уязвимая часть генератора и контактных колец.
Во время работы двигателя происходит непрерывная дозарядка аккумулятора и обеспечивается работа электрических потребителей, подключенных к бортовой сети автомобиля. В торговой сети можно найти запчасти к генераторам, в том числе и корпус статора с обмотками. Электрические неисправности также устраняются путем замены неисправных деталей новыми.
ГЕНЕРАТОР И РЕЛЕ 702 ДЛЯ ИНДИКАЦИИ РАБОТЫ ГЕНЕРАТОРА
Схема подключения генератора в автомобилях ВАЗ
Основные требования к автомобильным генераторам 1.
Вращающийся якорь создает электромагнитные поля, которые индуцируют в обмотках статора переменный ток. Например, пробитый регулятор напряжения будет постоянно перезаряжать батарею. Привлекает внимание наличие контактных колец 4 и механизма щёткодержателей 5.
Снятие характеристики осуществляется с интервалом до мин-1 и мин-1 при более высоких частотах.
Для защиты цепей генераторной установки применяют предохранители, обычно в цепях контрольной лампы, соединениях регулятора с аккумуляторной батареей, в цепи питания аккумуляторной батареи. Выпрямительного устройства. Само подключение осуществляется поэтапно: Наиболее простой способ подключения — это в розетку домашней сети.
Схема автомобильного генератора ВАЗ 2110:
Асинхронный генератор в сборе Принцип действия По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. Фазные напряжения Uф1 действует в обмотке первой фазы, Uф2 — второй, Uф3 — третьей.
Максимальный ток отдачи определяется при частоте вращения ротора в 6 мин Автомобильный генератор может оснащаться двумя типами щеток: Меднографитовые. При таких симптомах следует проверить сепараторные элементы, дорожки качения, контактные кольца на предмет проворота.
Поддержание генератора в исправном состоянии позволит избежать крупных трат на капитальный ремонт авто. Эти регуляторы не подвержены разрегулировке и не требуют никакого обслуживания, кроме контроля надежности контактов. Генераторные установки без дополнительного выпрямителя, но с подводом к регулятору вывода фаз, применение которых, особенно японскими и американскими фирмами, расширяется, выполняются по схеме рис.
Для экономии металла конструкторы создали статор, состоящий из отдельных сегментов в виде подковы. При таких симптомах следует проверить сепараторные элементы, дорожки качения, контактные кольца на предмет проворота. Характеристики автомобильных генераторов Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой ТСХ — зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения ротора при постоянной величине напряжения на силовых выводах. Полностью отвернуть болт крепления регулировочной планки к блоку цилиндров, после чего снизу авто отворачиваем 2 болта крепления нижнего кронштейна к блоку и снимаем генератор, вытащив его из подкапотного пространства. На видео происходит разбор бензогенератора Firman и рассказ о его устройстве Схема устройства Безусловно, неопытному человеку довольно сложно разобраться во всевозможных схемах подключения и устройства бензиновых генераторов.
Для чего нужен контакт «D» и «L» автомобильного генератора.
класса 10 — принцип работы, схема
Последнее обновление: 1 мая 2020 г., Teachoo
Что такое электрогенератор?
Электрогенератор — это устройство, преобразующее механическую энергию в электрическую.
Это выглядит как
Принцип электрического генератора
Электрогенератор работает по принципу:
когда прямой проводник перемещается в магнитном поле,
тогда в проводнике индуцируется ток.
Типы генераторов
Генератор используется для выработки электрического тока.
Электрический ток может быть переменным или постоянным.
Таким образом, электрические генераторы бывают двух типов.
Запись : Всякий раз, когда упоминается электрический генератор, мы будем предполагать, что это генератор переменного тока.
Строительство электрогенератора переменного тока
Электрогенератор переменного тока состоит из
- Прямоугольная катушка провода ABCD
- А сильный подковообразный магнит (или 2 разных магнита) — Если взять 2 магнита, северный полюс первого магнита обращен к южному полюсу другого магнита, как показано на рисунке…
- В катушка размещена перпендикулярно магниту как показано на рисунке
- Концы катушки соединены с два кольца — R 1 и R 2
- Внешние токопроводящие кромки колец R 1 и R 2 связаны с двумя стационарные щетки — Б 1 & B 2 соответственно
- Внутренняя сторона колец изолирован и прикреплен к оси
В ось механически вращается вращать катушку - Эти кисти прикреплены к гальванометр чтобы показать протекание тока в цепи
Работа электрического генератора переменного тока
Давайте посмотрим на работу электрического генератора переменного тока.
- Предположим, что ось вращается по часовой стрелке, поэтому катушка также вращается по часовой стрелке,
Сторона AB катушки движется вверх, а боковая CD движется вниз
Применение Правило правой руки Флеминга на стороне AB,
сила направлена вверх, магнитное поле слева направо,
Итак, текущие потоки в статью i.е. из От А до Б - И применяя Правило правой руки Флеминга на стороне CD,
сила направлена вниз, магнитное поле слева направо,
Итак, текущие потоки из бумаги, т.е. из С к D - Следовательно, ток течет в щетку B 2 , движется по гальванометру и, наконец, входит в B 1
Следовательно, мы говорим, что ток течет из B 2 в B 1 во внешней цепи. - После пол-оборота,
Боковой компакт-диск с левой стороны, AB с правой стороны - Теперь с левой стороны опускается компакт-диск,
Применение Правило правой руки Флеминга на стороне CD,
сила направлена вниз, магнитное поле слева направо,
Итак, текущие потоки из бумаги, т.е. из От D до C - А справа появляется AB,
Применение Правило правой руки Флеминга на стороне AB,
сила направлена вверх, магнитное поле слева направо,
Итак, текущие потоки в статью i.е. из От А до Б - Следовательно, наша схема теперь DCBA,
и текущие движения в противоположное направление
- Следовательно, мы говорим, что ток течет из B 1 в B 2 во внешней цепи.
- Таким образом, после каждого полуоборота направление тока меняется.
Следовательно, создается переменный ток.
Теперь давайте посмотрим на генератор постоянного тока — ток в одном направлении.
Примечание: чтобы преобразовать генератор переменного тока в генератор постоянного тока, мы используем коммутатор с разрезными кольцами (Разделить, а не проскользнуть).Так же, как мы делаем в электродвигателе
Строительство генератора постоянного тока
Электрогенератор постоянного тока состоит из
- Прямоугольная катушка провода ABCD
- А сильный подковообразный магнит (или 2 разных магнита) — Если взять 2 магнита, северный полюс первого магнита обращен к южному полюсу другого магнита, как показано на рисунке …
- В катушка размещена перпендикулярно магниту как показано на рисунке
- Концы катушки подключены к разъему кольцевого коммутатора — P и Q
- Внешние токопроводящие кромки колец P и Q соединены с двумя стационарные щетки — X и Y соответственно
- Внутренняя сторона колец изолирован и прикреплен к оси
В ось механически вращается вращать катушку - Эти кисти прикреплены к гальванометр чтобы показать протекание тока в цепи
Работа электрического генератора постоянного тока
Давайте посмотрим на работу электрического генератора постоянного тока.
- Предположим, что ось вращается по часовой стрелке, поэтому катушка также вращается по часовой стрелке,
Сторона AB катушки движется вверх, а боковая CD движется вниз
Применение Правило правой руки Флеминга на стороне AB,
сила направлена вверх, магнитное поле слева направо,
Итак, текущие потоки в статью i.е. из От А до Б - И применяя Правило правой руки Флеминга на стороне CD,
сила направлена вниз, магнитное поле слева направо,
Итак, текущие потоки из бумаги, т.е. из С к D - Следовательно, ток течет в щетку Y, движется по гальванометру и, наконец, попадает в X
Следовательно, мы говорим, что ток течет из Y к X во внешней цепи. - После пол-оборота,
Боковой компакт-диск с левой стороны, AB с правой стороны - И Разъемное кольцо P подключено к катушке CD. и разрезное кольцо Q подключено к катушке AB.
Который сохраняет направление тока в цепи одинаковым. - Следовательно, ток течет от щетки Y, движется по гальванометру и, наконец, попадает в X
Следовательно, мы говорим, что ток течет из Y к X во внешней цепи. - Таким образом, направление тока после каждого полуоборота, направление тока меняется.
Следовательно, создается переменный ток.
Как электростанции увеличивают производимый ток и напряжение?
Они увеличивают ток и напряжение, производимые
- Использование электромагнита вместо постоянного магнита
- Большое количество витков проводящего провода (чем больше витков провода, тем больше магнитное поле)
- Мягкое железо Сердечник, на который намотана катушка
- Вращение катушки быстрее
Вопросов
NCERT Вопрос 4 — Существенное различие между генератором переменного тока и генератором постоянного тока состоит в том, что
- Генератор переменного тока имеет электромагнит, а генератор постоянного тока — постоянный магнит.
- Генератор постоянного тока будет генерировать более высокое напряжение.
- Генератор переменного тока будет генерировать более высокое напряжение.
- Генератор переменного тока имеет контактные кольца, а генератор постоянного тока имеет коммутатор.
Посмотреть ответ
Вопрос 6 (b) NCERT — Укажите, верны ли следующие утверждения.
Электрогенератор работает по принципу электромагнитной индукции.
Посмотреть ответ
NCERT Вопрос 16 — Существенное различие между генератором переменного тока и генератором постоянного тока состоит в том, что
Посмотреть ответ
Вопрос 1 Страница 237 — Изложите принцип работы электрогенератора.
Посмотреть ответ
Вопрос 4 Страница 237 — Прямоугольная катушка из медной проволоки вращается в магнитном поле.Направление индуцированного тока меняется один раз в каждом
(а) два оборота (б) один оборот
(c) половина оборота (d) одна четвертая оборота
Посмотреть ответ
Подпишитесь на наш канал Youtube — https://you.tube/teachoo
электрическая схема | Схемы и примеры
Электрическая цепь , путь для передачи электрического тока. Электрическая цепь включает в себя устройство, которое передает энергию заряженным частицам, составляющим ток, такое как аккумулятор или генератор; устройства, использующие ток, такие как лампы, электродвигатели или компьютеры; и соединительные провода или линии передачи.Два основных закона, которые математически описывают характеристики электрических цепей, — это закон Ома и правила Кирхгофа.
Принципиальная электрическая схема с выключателем, батареей и лампой.
© Открыть индексПодробнее по этой теме
Магнитная керамика: электрические цепи
Хотя керамические ферриты имеют меньшую намагниченность насыщения, чем магнитные металлы, их можно сделать гораздо более резистивными к электрическому току…
Электрические цепи классифицируются по нескольким признакам. В цепи постоянного тока проходит ток, который течет только в одном направлении. В цепи переменного тока передается ток, который пульсирует вперед и назад много раз каждую секунду, как и в большинстве домашних цепей. (Для более подробного обсуждения цепей постоянного и переменного тока, см. электричество: Постоянный электрический ток и электричество: Переменные электрические токи.) Последовательная цепь представляет собой путь, по которому весь ток протекает через каждый компонент.Параллельная цепь состоит из ветвей, поэтому ток разделяется, и только часть его протекает через любую ветвь. Напряжение или разность потенциалов на каждой ветви параллельной цепи одинаковы, но токи могут отличаться. В домашней электрической цепи, например, одно и то же напряжение подается на каждый светильник или прибор, но каждая из этих нагрузок потребляет разное количество тока в соответствии с требованиями к мощности. Несколько одинаковых батарей, подключенных параллельно, обеспечивают больший ток, чем одна батарея, но напряжение такое же, как и у одной батареи. См. Также интегральная схема; настроенная схема.
- последовательная цепь
последовательная цепь.
Encyclopædia Britannica, Inc. - параллельная цепь
параллельная цепь.
Encyclopædia Britannica, Inc.
Сеть транзисторов, трансформаторов, конденсаторов, соединительных проводов и других электронных компонентов в одном устройстве, таком как радио, также представляет собой электрическую цепь. Такие сложные схемы могут состоять из одной или нескольких ветвей в комбинациях последовательного и последовательно-параллельного расположения.
- амперметр
Две схемы, показывающие амперметр, подключенный к простой цепи в двух разных положениях.
Encyclopædia Britannica, Inc. - Схема с вольтметром
Схема, показывающая вольтметр, подключенный к простой цепи.
Encyclopædia Britannica, Inc.
Работает ли генератор дороже
Насколько дешевле запустить генератор, чем запитать дом от сети? Г-н.Компания Electric подсчитала стоимость эксплуатации генератора. Что они откроют?
Работает ли генератор дороже?
Поскольку тарифы на электроэнергию, а также стоимость ископаемого топлива, такого как природный газ, пропан, газ и дизельное топливо, варьируются от штата к штату, а генераторы предлагают разную степень временной мощности, от покрытия предметов первой необходимости до потребностей всего дома, расчеты могут быть немного сложно. Однако ниже у нас есть некоторые средние цифры, основанные на текущих оценках, которые помогут дать вам общую картину эксплуатационных расходов при использовании для расчета затрат на топливо:
- Стоимость эксплуатации бензинового генератора
Зарядить бензиновый генератор для вечеринки у двери багажного отделения? Генераторы, работающие на газе, — не самый экономичный вариант энергии.При средней цене бензина в 2,89 доллара (оценка на июль 2018 года) и типичном 5-киловаттном генераторе , используемом для питания только «спасательных средств», потребляющих примерно 0,75 галлона в час, дневная работа генератора потребляет около 18 галлонов. накапливая 52 доллара в день на топливо. - Стоимость эксплуатации дизельного генератора
Переносные дизельные варианты, исходя из средней стоимости топлива в 3,17 доллара за галлон, и 20-киловаттного генератора , способного питать более крупные предметы первой необходимости, такие как HVAC, скважинные насосы и водонагреватели, потребляют около 1.6 галлонов в час и будет стоить около 122 доллара в день в виде затрат на топливо. - Стоимость эксплуатации пропанового генератора
Более чистый вариант энергии, чем газовые и дизельные генераторы, однако пропан сгорает быстрее. Это также может стоить немного больше, чем бензин, при заправке вашего устройства из 20-фунтовых баков. Однако, если у вас есть большой резервуар, расчеты сдвигаются. Переносной генератор мощностью 20 киловатт , сжигающий около 3,45 галлона в час, потреблял бы около 83 галлонов в день, увеличивая затраты на топливо на более 200 долларов. Резервуар на месте? Вы можете получить немного больше энергии с 22-киловаттным резервным генератором (который автоматически включается при отключении электроэнергии, в отличие от портативной модели), сжигая около 3,6 галлона в час при полной нагрузке за чуть более 200 долларов. /день. - Стоимость эксплуатации генератора природного газа
Для районов, подверженных перебоям в подаче электроэнергии и имеющимся подключением природного газа, резервный генератор «для всего дома» обеспечивает более эффективное производство электроэнергии. Стоимость около 3 долларов.26 за тысячу кубических футов, эксплуатационные расходы будут зависеть от размера генератора, в диапазоне 20-40 долларов в день:- Портативный генератор мощностью 7 киловатт:
Использует до 118 кубических футов в час, стоит около 0,82 доллара за час работы. - Переносной генератор мощностью 15 киловатт:
Использует до 245 кубических футов в час, стоит около 1,71 доллара за час работы.
- Портативный генератор мощностью 7 киловатт:
Сколько стоит (эквивалентная) электросеть?
Вы, вероятно, имеете общее представление о том, сколько вы тратите ежедневно на электроэнергию, учитывая ваш ежемесячный счет за коммунальные услуги.Хотя, как и в случае с топливом, тарифы на электроэнергию различаются в зависимости от штата / региона, согласно последним статистическим данным о средних затратах на электроэнергию по стране, с учетом данных за 2017 год, среднемесячный счет составляет 111,67 долларов. Разделите это на 30 дней в месяц, это равно примерно 3,72 доллара в день или 0,15 доллара в час для электросети.
Что лучше: сеть или генератор?
Не требуется математического гения, чтобы быстро понять, что электроэнергия в сети намного дешевле, чем ежедневные затраты на работу генератора на любом виде топлива. В целом, удобство использования энергии из сети и более низкие затраты делают его более практичным вариантом в долгосрочной перспективе.Электроэнергия также более экологична, чем работа генератора. При этом, несмотря на дополнительные расходы, большинство из них все же рассмотрит вопрос о дополнительных расходах на топливо для генератора, чтобы обеспечить электроэнергию в случае отключения электроэнергии, что является оправданным вложением.
Не уверены, какой генератор является лучшим решением для удовлетворения потребностей вашего дома и семьи? Команда Mr. Electric может помочь вам решить, ответив на важные вопросы и бесплатно предоставив смету установки. Свяжитесь с нами, чтобы узнать больше сегодня.
Этот блог предоставляется компанией Mr. Electric только в образовательных целях, чтобы дать читателю общую информацию и общее понимание по конкретной теме, указанной выше. Блог не должен использоваться в качестве замены лицензированного специалиста-электрика в вашем штате или регионе. Перед выполнением любого домашнего проекта сверьтесь с законами города и штата.
Электрическая схема — Простая английская Википедия, бесплатная энциклопедия
Электрическая цепь — это путь, по которому текут электроны от источника напряжения или тока.
Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.
Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи.Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.
В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот.Для передачи постоянного тока высокого напряжения используются большие преобразователи.
Экспериментальная электронная схемаВ электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере. Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.
Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательной цепи — это сумма сопротивлений.
Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Создание чертежа соединений всех компонентов в нагрузке схемы упрощает понимание того, как компоненты схемы связаны. Чертежи электронных схем называются «принципиальными схемами».Чертежи электрических схем называют «электрическими схемами». Как и другие диаграммы, эти диаграммы обычно рисуются чертежниками, а затем распечатываются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.
Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичным изображением цепи. На схемах используются символы для обозначения компонентов в цепи. Условные обозначения используются в схеме, чтобы обозначить путь потока электроэнергии.Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электроэнергии — от отрицательного полюса к положительному.
На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.
Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя компонента. Это может вызвать серьезные повреждения других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком большим, или предохранитель «перегорает». Это дает защиту.
Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]
Стандартный вывод для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью его электрической цепи, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.
Для предотвращения опасности поражения электрическим током и возможности поражения электрическим током устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи на землю G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.
Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и отключенная.Обычно они перегорают, но иногда этого не происходит. Выполнение этого с аккумулятором может вызвать электрический пожар.
Что такое электрическая цепь? (с рисунками)
Электрическая цепь — это устройство, которое использует электричество для выполнения определенной задачи, например, для создания вакуума или питания лампы. Схема представляет собой замкнутый контур, состоящий из источника питания, проводов, предохранителя, нагрузки и переключателя. Электричество течет по цепи и доставляется к объекту, который он питает, например, к вакуумному двигателю или лампочке, после чего электричество отправляется обратно к первоначальному источнику; этот возврат электричества позволяет цепи поддерживать электрический ток.Существуют три типа электрических цепей: последовательная цепь, параллельная цепь и последовательно-параллельная цепь; в зависимости от типа цепи, электричество может продолжать течь, если цепь перестает работать. Две концепции, закон Ома и напряжение источника, могут влиять на количество электричества, протекающего через цепь, и, следовательно, на то, насколько хорошо электрическая цепь функционирует.
Техник по ремонту электрических цепей.Как это работает
Большинство устройств, работающих от электричества, содержат электрическую цепь; при подключении к источнику питания, например к электрической розетке, электричество может проходить через электрическую цепь внутри устройства, а затем возвращаться к исходному источнику питания, чтобы продолжить поток электроэнергии.Другими словами, когда переключатель питания включен, электрическая цепь замыкается, и ток течет от положительной клеммы источника питания через провод к нагрузке и, наконец, к отрицательной клемме. Любое устройство, которое потребляет энергию, протекающую по цепи, и преобразует эту энергию в работу, называется нагрузкой. Лампочка — один из примеров нагрузки; он потребляет электричество из цепи и преобразует его в работу — тепло и свет.
Предохранители в блоке предохранителей.Типы цепей
Последовательная схема является самой простой, потому что у нее есть только один возможный путь, по которому может течь электрический ток; при разрыве электрической цепи ни одно из устройств нагрузки не будет работать. Разница с параллельными цепями состоит в том, что они содержат более одного пути для прохождения электричества, поэтому, если один из путей будет нарушен, другие пути будут продолжать работать.Однако последовательно-параллельная цепь представляет собой комбинацию первых двух: она подключает некоторые нагрузки к последовательной цепи, а другие — к параллельным цепям. При разрыве последовательной цепи ни одна из нагрузок не будет работать, но если одна из параллельных цепей разорвется, эта параллельная цепь и последовательная цепь перестанут работать, а другие параллельные цепи продолжат работу.
Предохранитель — это ключевая часть электрической цепи.Закон Ома
Многие «законы» применимы к электрическим цепям, но Закон Ома, вероятно, наиболее известен. Закон Ома гласит, что ток электрической цепи прямо пропорционален ее напряжению и обратно пропорционален ее сопротивлению. Так, например, если напряжение увеличивается, ток также увеличивается, а если увеличивается сопротивление, ток уменьшается; обе ситуации напрямую влияют на эффективность электрических цепей.Чтобы понять закон Ома, важно понимать концепции тока, напряжения и сопротивления: ток — это поток электрического заряда, напряжение — это сила, которая движет ток в одном направлении, а сопротивление — это противоположность объекта тому, чтобы иметь ток проходит через него. Формула закона Ома: E = I x R, где E = напряжение в вольтах, I = ток в амперах и R = сопротивление в омах; эту формулу можно использовать для анализа напряжения, тока и сопротивления электрических цепей.
Амперы, вольты, ватты и омы измеряют различные аспекты электричества, проходящего по цепи.Напряжение источника
Другое важное понятие, касающееся электрических цепей, напряжение источника относится к величине напряжения, которое вырабатывается источником питания и прикладывается к цепи.Другими словами, напряжение источника зависит от того, сколько электроэнергии будет получать цепь. Напряжение источника зависит от величины сопротивления в электрической цепи; это также может повлиять на величину тока, поскольку на ток обычно влияют как напряжение, так и сопротивление. Однако сопротивление не зависит от напряжения или тока, но может уменьшить как напряжение, так и ток в электрических цепях.
Резисторы — это электрические устройства, управляющие прохождением тока через цепь.